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Introduction

The MathComp [1] library of the Rocq Prover contains thousands of definitions and lemmas,
yet many currently lack detailed docstrings or explanatory comments [4, 14]. This scarcity
of documentation creates steep learning curves for newcomers and makes it difficult to locate
the right lemmas or understand formal statements [3, 15]. Recent advances in large language
models (LLMs) offer a promising solution: LLMs have demonstrated an ability to generate code
documentation and even assist with formal proofs in interactive theorem provers [10, 2, 7, 8, 9].
However, directly applying general-purpose LLMs to Rocq code is non-trivial—the scarcity of
training data presents unique challenges [4, 12]. Addressing this gap requires domain-specific
training data and a strategy to align LLM outputs with expert knowledge [6].

In this extended abstract, we present LLM4Docq, a project that aims to use LLMs
and human feedback to augment MathComp with docstrings [10]. Our approach focuses on
two key goals. First, we aim to improve user accessibility to the MathComp library by en-
abling natural language retrieval of formal content [3]. Second, we fine-tune an off-the-shelf
LLM for Rocq—a model trained on Rocq code paired with docstrings—for tasks such as code
auto-completion, documentation generation, and even auto-formalization [11]. This strategy
combines a user-centric application (search by natural language) with deep learning research
(fine-tuning on a specialized corpus). In the following, we describe our two-step methodology
for dataset creation.

Methodology: Human-in-the-Loop Documentation

Our process consists of an iterative human-in-the-loop annotation pipeline to efficiently
bootstrap a large docstring dataset [13]. In Step 1, an LLM is used to automatically generate
initial docstrings for every definition, lemma, theorem, etc., in MathComp (over 30,000 items)
[10]. While modern models can produce plausible documentation, outputs vary in quality—some
descriptions are accurate, others may be incomplete or even incorrect [15]. Rather than fully
trusting these generations, we plan to incorporate expert review to refine them [6].

In Step 2, human experts will review and provide feedback on a subset of the LLM-generated
docstrings. Using a collaborative annotation platform [13], each candidate docstring is labeled
as Acceptable, Needs Improvement, or Incorrect, along with corrections or suggestions
when applicable (See Figure 1 for examples of LLM-generated docstrings, illustrating both a
typical failure and a success case as displayed in the collaborative annotation platform.). Instead
of doing a full audit of the dataset, we leverage feedback from partial auditing to regenerate or
improve the remaining docstrings. For any entries annotated as ”Needs Improvement” or ”In-
correct” corresponding to some systemic issue, we will update the LLM prompts with additional

∗Inria, CNRS, ENS de Lyon, LIP, UMR 5668, France
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instructions or examples derived from the expert suggestions, and have the LLM produce new
versions. This targeted re-generation uses the latest feedback as guidance, allowing the LLM to
avoid past mistakes and align with human-preferred style and accuracy [6]. We plan to iterate
this process to progressively converge on a high-quality documentation corpus with minimal
human effort on each round.

Our human-in-the-loop approach is inspired by alignment techniques like reinforcement
learning from human feedback, where models learn from preference data to better satisfy user
intent [6]. However, instead of learning a reward model, we apply feedback directly as constraints
and examples for the next generation cycle. By leveraging LLM suggestions as a starting point
and expert knowledge for correction, we expect to rapidly produce a comprehensive set of doc-
strings that would have otherwise required more time to author manually [15].

(a) Failure case (b) Success case

Figure 1: Illustration of LLM-generated docstrings: (a) a failure case and (b) a success case.
Both cases are shown as they appear on the collaborative annotation platform.

LLM Fine-Tuning on MathComp augmented with Docstrings

The curated dataset of MathComp code annotated with reviewed docstrings enables us to
train a domain-specific LLM for Rocq [4, 10]. We are fine-tuning a code-oriented model
(Qwen 2.5 32b coder base [5]) on our augmented codebase, effectively performing continued
pre-training on Rocq’s formal language enriched with natural language explanations [7, 8, 2].
This technique—training on source code together with documentation—has precedent in software
engineering: fine-tuning an LLM on code-comment pairs can greatly improve its ability to
generate docstrings and understand code intent [14]. In our case, the model is encouraged to
associate Rocq definitions/lemmas with their natural-language descriptions [7, 8].

Recent work has combined fine-tuned LLMs on large Rocq corpora, such as CoqStoq, with
retrieval-augmented generation for automatic proof synthesis [12]. While Rango focuses on
proof generation, it validates the strategy of domain-specific fine-tuning on formal code. Other
systems, such as RocqStar, also aim to improve the proof search in Rocq using augmented
retrieval techniques [16].

We plan to evaluate the final model on two complementary tasks:

• Docstring Generation (Formal → NL): Given a formal MathComp statement and a
source code context, the model must generate an explanatory docstring [10].

• Statement Reconstruction (NL → Formal): Given a docstring and source code context,
the model must produce the corresponding Rocq formal statement (definition or lemma).
This is a form of auto-formalization on a small scale [11].
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