Extending Sort Polymorphism with
Elimination Constraints in Rocq

Tomés Diaz!, Kenji Maillard?, Johann Rosain®, Matthieu Sozeau?, Nicolas Tabareau?,
Eric Tanter!, and Théo Winterhalter*

! PLEIAD Lab, Computer Science Department (DCC), University of Chile, Chile
2 Nantes Université, Ecole Centrale Nantes, CNRS, INRIA, LS2N, Nantes, France
3 ENS de Lyon, Lyon, France
4 LMF & INRIA Saclay, Saclay, France

In Rocq, types are classified in different universes, e.g., computationally relevant types enjoying large
elimination live in Type whereas propositions (resp. strict propositions) are members of Prop (resp.
SProp). While this system offers great expressivity, it also leads to the duplication of definitions, e.g.,
the dependent pair inductive type has 3% = 27 possible instances: one for each combination of the sort
of the carrier, of the type family and sort of the pair. Moreover, several recent works have appealed for
distinct sorts, e.g., the two-level type theory to separate univalent and strict types [1], the reasonably
exceptional type theory to distinguish exceptional and pure types [4] or the reasonably gradual type
theory [3] to name a few. Refinements of the current sort system has also been explored, for instance by
Keller and Lasson [2] or Winterhalter [7].

In order to accomodate the different sorts already implemented in Rocq and to easily implement and
integrate new ones, Poiret et al. [5] have proposed an extension of this system that introduces (prenex)
polymorphism over sorts, named SortPoly. Even though SortPoly makes it possible to write, for example,
a single inductive type for dependent pairs, it lacks the crucial property of having a principal type: some
definitions still have to be duplicated. Moreover, others issues stemming from the subtle interactions
between sorts arise in SortPoly, e.g., the impossibility to define the most generic record type or eliminator.
To address these concerns, we introduce SortPoly’, a theory of sort polymorphism extended with bounds
reflecting the required elimination constraint between sort variables. In this document, we present our
implementation of SortPoly in Rocq by focusing on the features we provide, and the imposed restrictions.

The Failures of SortPoly

Sort polymorphism has been integrated in the Rocq Prover since version 8.19 [6]; see the Reference
Manual for an introduction. In this system, the sort-polymorphic dependent pair type can be defined as
follows:!

Inductive sigma@{si s2 s3} (A:UQ{s1}) (P:A — UQ{s2}) : UQ{s3} :=
exist: forall x: A, P x — sigma A P.

This is a great improvement over the 27 possible combinations, but the definition of projections suffers
from the unboundedness of the approach. Indeed, as one ought not to be able to project to a Type-valued
carrier from a Prop-valued Y-type, the first projection of the sort polymorphic dependent pair can only
be defined when s3 is actually si:

Definition proji@{s: sz} {A:UQ{s:}} {P:A — UQ{s2}} (p:sigma@{s; s2 s1} AP) : A :=
match p with exist x _ = x end.

The case of the second projection is even more restrictive, needing that s3 be both sy and s; as proj; is
called in order to define the second projection:

Definition proj2@{s:} {A:U4Q@Q{s:}} {P:A — UQ{s1}} (p:sigma@{s: s; s1} A P) : P (proji p) := ...

These restrictions are also dually reflected for the introduction of the negative counterparts of the in-
ductives: records. For instance, the only sort-polymorphic record with primitive projections accepted by
SortPoly is the one where all three sorts are equal:

Record prod@{s} (A:U{@{s}) (P:A — UQ{s}) : UQ{s} := pair {fst: A; snd: P fst}.

IFor readability, we omit universe level variables in our examples.

https://coq.inria.fr/doc/v8.19/refman/addendum/universe-polymorphism.html#sort-polymorphism
https://coq.inria.fr/doc/v8.19/refman/addendum/universe-polymorphism.html#sort-polymorphism

Another limitation of SortPoly appears during the inference of sorts. For example, in the map function
over sort-polymorphic lists:

Fixpoint map A B (f:A — B) (1:1list A) : list B :=
match 1 with [J = [| x :: xs = f x :: map f xs end.

Here, the elaboration algorithm can either infer that A and B have the same sort, or that A is in Type and
B is a sort variable.

Elimination Constraints to the Rescue

In SortPoly’, we introduce elimination constraints s; ~ s, stating that a term of a type in s; can be
eliminated to produce a term of a type living in so. This makes it possible to, e.g., write the most generic
projections of sigma:

Definition proji@{s: s2 s3lsz ~ s1} {A:UQ{s1}} {P:A — UQ{s2}}
(p:sigma@{s; sz sz} A P) : A := match p with exist x _ = x end.

Definition proj2@{si s2 s3zlss ~ si, sz ~ s2} {A:UQ{s;}} {P:A — UQ{s2}}
(p:sigma@{s; sz s3} A P) : P (fst p) := match p with exist x p = p end.

and also to write the most generic record of dependent pairs:

Record prod@{s; sz szlss ~ s1, s3 ~ s2} (A:UQ{s:}) (P:A — UQ{s2}) : UQ@{s3} :=
pair {fst: A; snd: P fst}.

Moreover, we have shown that SortPoly” enjoys the principality property and that a simple elaboration
function yields the principal type of a term. This allows e.g., to give a principal type for map (which is
such that list A:4/@{s:}, 1istB:U/@{s2} and s; ~» s2) and to generate the most generic eliminator for
a sort-polymorphic inductive type without any annotation, simply by setting the Universe Polymorphism
flag.

Imposed Restrictions

Elimination constraints between sorts introduce an inheritance of properties between sorts, e.g., if a
sort s eliminates into SProp, it means that s is consistent, whereas making a sort s eliminate to Type
enables large elimination for s. Likewise, having Prop eliminating to s makes it possible to prove an
impredicative product rule for s, while SProp ~+ s allows for s to enjoy propositional proof irrelevance.
But these different properties do not enjoy the same status: most of them are benign, but SProp ~ s is
critical for the decidability of type checking. Indeed, consider the following example:

Definition f@{s|SProp ~» s} (b:B@{SProp}) (A:U/Q{s}) (x y:A) : A :=
if b then x else y.

Using the congruence rule for application combined with definitional proof irrelevance makes the follow-
ing conversion valid: f true@{SProp} A x y = f false@{SProp} A x y, i.e., x = y. If g and g' are two
unrelated ground sorts having specific conversion rules, and g ~ s and g' ~ s, it becomes impossible
to ensure decidability of typing. Hence, we forbid any set containing such constraints.

Integration Plan

We have implemented SortPoly” in Rocq. The branch with all the features (still in development) can
be found here: https://github.com/TDiazT/coq/tree/sort-elaboration. Furthermore, we have
written an RFC in order to incrementally include these features to Rocq, which can be found here.

Basically, the RFC proposes to have 3 big phases of integration. The first one implements elimination
constraints (with more restrictions to ensure soundness and backward compatibility) in the kernel and
allows users to declare elimination constraints. The second provides the elaboration function that infers
the principal type of a definition under the Universe Polymorphism flag. The last one lifts the restrictions
we impose during the first phase after ensuring that we do not lose the decidability of typing.

During the workshop, we will present the SortPoly’ system through examples and report on the status
of the integration plan.

https://github.com/TDiazT/coq/tree/sort-elaboration
https://github.com/jrosain/rocq-rfcs/blob/elimination-constraints/text/elimination-constraints.md

References

1]

2]

Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-Level Type Theory and
Applications. Mathematical Structures in Computer Science, 33(8):688-743, 2023.

Chantal Keller and Marc Lasson. Parametricity in an Impredicative Sort. In Patrick Cégielski
and Arnaud Durand, editors, Computer Science Logic (CSL’12) - 26th International Workshop/21st
Annual Conference of the FACSL, CSL 2012, September 3-6, 2012, Fontainebleau, France, volume 16
of LIPIcs, pages 381-395. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2012.

Kenji Maillard, Meven Lennon-Bertrand, Nicolas Tabareau, and Eric Tanter. A reasonably gradual
type theory. Proceedings of the ACM on Programming Languages, 6(ICFP):931-959, August 2022.

Pierre-Marie Pédrot, Nicolas Tabareau, Hans Jacob Fehrmann, and Eric Tanter. A Reasonably
Exceptional Type Theory. Proceedings of the ACM on Programming Languages, 3(ICFP), July 2019.

Josselin Poiret, Gaétan Gilbert, Kenji Maillard, Pierre-Marie Pédrot, Matthieu Sozeau, Nicolas
Tabareau, and Eric Tanter. All your base are belong to us: Sort polymorphism for proof assistants.
Proceedings of the ACM on Programming Languages, 9(POPL):76:1-76:29, January 2025.

The Coq Development Team. The Coq Proof Assistant, version 8.19. June 2024.

Théo Winterhalter. Dependent Ghosts Have a Reflection for Free. Proceedings of the ACM on
Programming Languages, (258):630-658, August 2024.

https://doi.org/10.4230/LIPIcs.CSL.2012.381
https://doi.org/10.1145/3341712
https://doi.org/10.1145/3341712
https://doi.org/10.5281/zenodo.11551307
https://hal.science/hal-04163836

	References

