
Interaction Trees and Verified Compilation
Extended Abstract

Paolo Torrini, INRIA Sophia-Antipolis, France

Benjamin Gregoire, INRIA Sophia-Antipolis, France

Paolo.Torrini@inria.fr
Benjamin.Gregoire@inria.fr

Abstract
We have used Interaction Trees (ITrees) to formalize and

verify the front-end of the Jasmin compiler, relying on an

integration of coinductive denotational semantics with Re-

lational Hoare Logic. A crucial element in our approach is

the definition of an appropriate relation to compare pro-

grams, which makes it possible to simplify the reasoning

about undefined behaviour.

ITrees [11] can be used to reason denotationally about pos-

sibly diverging programs in an executable, modular way,

thus providing an attractive alternative to the operational

semantics used in major verified compilation projects such

as CompCert [7] and CakeML [6]. The coinductive datatype

itree 𝐸 𝑉 , parameterized by a type family of events 𝐸 and

a final result type 𝑉 , represents computations as trees with

possibly infinite branches. A leaf Ret 𝑣 is termination with

value 𝑣 : 𝑉 . A unary node Tau 𝑡 is a silent transition step

which continues with 𝑡 : itree 𝐸 𝑉 . A multi-branching node

Vis 𝐴 𝑒 𝑘 is a computation that executes the event 𝑒 : 𝐸 𝐴

and feeds the answer to the continuation 𝑘 : 𝐴 → itree 𝐸 𝑉 .

Being monad themselves, ITrees can be executed by layer-

ing monadic interpreters, each associated with a handler for

a subfamily of events. Generalized recursion can be repre-

sented as corecursive interpretation of call events relying

on a monadic iterator. Failures can be represented as events

that return in the null type, to be interpreted using an error

monad transformer. ITrees facilitate coinductive reasoning

through a rich equational theory [1]. Modularity is supported

by disjoint unions of event families (e.g. 𝐸1+′𝐸2) and interpre-
tation layers, possibly associated with monad transformers.

Jasmin [2, 3] is a comparatively low-level language in-

tended for security applications, designed to give the pro-

grammer explicit control on the generation of assembly code.

It includes operators and instructions on memory and reg-

isters, conditional statements, while loops, internal and ex-

ternal function calls. It is formalized in Rocq with a fully

verified compiler based on a big-step semantics for terminat-

ing programs and a concrete memory model. In order to lift

the termination restriction, we defined a new semantics with

ITrees and used it to verify so far the compiler front-end,

based on a language that remains syntactically the same

while being semantically interpreted differently after each

pass (more than twenty ones, including constant propaga-

tion, dead code elimination, inlining and stack allocation).

Reasoning about compilation relies on the definition of

behavioural equivalence between source and target, which

can be used either for forward or backward reasoning. Some

subtlety is involved in dealing with abnormal termination.

Compilation is meant to preserve normal behaviour, but in

general the compiler may not worry about what happens

when the source throws a run-time error. Indeed, compiler

correctness proofs are often restricted to safe executions, i.e.
those that do not terminate abnormally. Verified compilation

is meant to preserve safety as part of behaviour preservation,

and therefore it suffices to assume that the initial source

is safe. However, the safety restriction makes proofs less

general and can complicate compositionality. In order to

lift this restriction, in our verification we use a notion of

program equivalence which makes it possible to express that

the compiled code behaves like the source only up to events

called cutoffs. Cutoff events can be used to represent source

errors which are meant to be matched with any behaviour in

the target, as causal instances of undefined behaviour (UB).

Notice that unlike C and LLVM, Jasmin has a deterministic

semantics, but interpreting failure as UB helps to make the

semantics simpler.
1

The ITree library [1] provides generalizations of bisim-

ilarity, both strong (�𝑅) and weak (≈𝑅 , called equivalence
up-to-tau), parameterized by a relation 𝑅 between result

types, allowing for trees which are heterogeneous in the

returned value types to be related, provided they use the

same events. Instantiating 𝑅 with equality gives us the usual

strong and weak bisimilarity. The fact that, regardless of

𝑅, related events must be equal, makes it hard to directly

relate function calls across a translation while keeping into

account differences in the types of call arguments and results.

A way around this problem, showcased in [4, 11–13] consists

in layering interpretations, separating a common ground of

ITrees based on the same events which can be compared

directly, from higher-level layers which need to be compared

in terms of more complex notions of refinement, also using

predicates on ITrees [4, 13] to account for non-determinism

(a problem we do not need to deal with). A more intensional

way to relate programs is given by the event-heterogeneous

relation introduced in [10], used in [4, 9] and here denoted

≈𝑒
𝑅
, as a generalization of ≈𝑅 which is parameterized by two

additional relations: a precondition specifying which events

1
Unlike [4] we do not consider time-travelling UB.



P. Torrini, B. Gregoire

can be related, inclusive of their inputs, and a postcondition

which is expected to hold between the outputs of event exe-

cution. ≈𝑒
𝑅
makes it possible to capture structural similarity

more directly, yet it does not let us interpret source errors as

UB, as it does not allow relating a terminating program with

a silently non-terminating one. While needed with normal

termination, this restriction is unnecessary when dealing

with an abnormal one.

We can answer this problem by a generalization of ≈𝑒
𝑅
, de-

noted ≈𝑢
𝑅
, which we call equivalence up-to-cutoff. As much as

≈𝑅 and ≈𝑒
𝑅
, ≈𝑢

𝑅
is coinductively defined as the greatest fixed

point of an inductive relation. Its definition is illustrated in

Figure 1, where a single bar means that the hypothesis is used

inductively, while a double bar means that it is used coin-

ductively (or simply non-inductively). ≈𝑢
𝑅
can relate wholly

heterogeneous trees 𝑡1 : itree 𝐸1 𝑉1 and 𝑡2 : itree 𝐸2 𝑉2. The
rules Ret, Tau, Tau𝑙 , Tau𝑟 , and Vis are those of ≈𝑒

𝑅
. Ret

allows relating return values by 𝑅. In the Vis rule, Φ acts

as relational precondition and Ψ as postcondition for the

event handlers used to interpret the events. As in [10, 11]

the fact that rules Tau𝑙 and Tau𝑟 rely on their hypothesis

inductively ensures that the related trees can only differ up

to a finite number of silent steps. Specifically to ≈𝑢
𝑅
, there

are as additional parameters two Boolean predicates 𝐶𝑙
on

𝐸1 events and 𝐶
𝑟
on 𝐸2 ones, deciding which are the cutoffs

on each side, and two additional rules Cut𝑙 and Cut𝑟 , which

allow for a cutoff to be related with any tree.
2 ≈𝑢

𝑅
supports

setoid rewriting, enjoys structural properties, monotonicity,

transitivity, and it is preserved by interpretation (Intr) for
related handlers (ℎ1, ℎ2):

𝑡1 ≈𝑢
𝑅 𝑡2 → (∀𝑒1𝑒2. ℎ1 𝑒1 ≈𝑢

𝑅 ℎ2 𝑒2) → Intrℎ1
𝑡1 ≈𝑢

𝑅 Intrℎ2
𝑡2

Our intended semantics for Jasmin is to relate a source

failure to any behaviour of the target program beyond that

point. Using ≈𝑢
𝑅
, it suffices to declare source failures as cut-

off events. We write ≈𝑢

𝑅 Φ Ψ 𝐶𝑙 𝐶𝑟
for the fully parameterized

relation. We also write ⌈𝑝𝑖⌉𝑠𝑖 , depending on state 𝑠𝑖 : 𝑆𝑖 , for

the semantic interpretation of program 𝑝𝑖 : L (after the 𝑖-th

pass) as an ITree of type itree (𝐹 +′𝐺) 𝑆𝑖 where 𝐹 is the type

family of failure events. Further writing 𝑅𝑖 for the relation

between states across the pass, Φ𝑖 for the precondition that

holds between events and Ψ𝑖 for the corresponding postcon-

dition, 𝐶𝐹 for the predicate that sets 𝐹 events as the only

cutoffs and𝐶∅ as the predicate that sets no cutoffs, the verifi-
cation of a two-pass compilation (where related events may

differ even if they belong to the same family) can be built

transitively out of two components:

⊢Γ ⌈𝑝0⌉𝑠𝑜 ≈𝑢
𝑅1Φ1Ψ1𝐶𝐹𝐶∅

⌈𝑝1⌉𝑠1 ⊢Γ ⌈𝑝1⌉𝑠1 ≈𝑢
𝑅2Φ2Ψ2𝐶𝐹𝐶∅

⌈𝑝2⌉𝑠2
⊢Γ ⌈𝑝0⌉𝑠0 ≈𝑢

(𝑅1◦𝑅2 ) (Φ1◦Φ2 ) (Ψ1◦Ψ2 )𝐶𝐹𝐶∅
⌈𝑝2⌉𝑠2

This principle holds regardless of the events in 𝐺 (which

are still uninterpreted). Nonetheless, our current verification

2
A more specific form of this relation was already used in [4].

𝑟1 𝑅 𝑟2

Ret(𝑟1) 𝑢≈ Ret(𝑟2)
=========================== Ret

𝑡1
𝑢≈ 𝑡2

Tau(𝑡1) 𝑢≈ Tau(𝑡2)
=========================== Tau

𝐶𝑙 (𝑒1)

Vis(𝑒1, 𝑘1) 𝑢≈ 𝑡2

======================= Cut𝑙

𝐶𝑟 (𝑒2)

𝑡1
𝑢≈ Vis(𝑒2, 𝑘2)

======================= Cut𝑟

𝑡1
𝑢≈ 𝑡2

Tau(𝑡1) 𝑢≈ 𝑡2
Tau𝑙

𝑡1
𝑢≈ 𝑡2

𝑡1
𝑢≈ Tau(𝑡2)

Tau𝑟

𝑒1 Φ 𝑒2 ∀𝑣1 𝑣2 . (𝑒1, 𝑣1) Ψ (𝑒2, 𝑣2) =⇒ 𝑘1 (𝑣1) 𝑢≈ 𝑘2 (𝑣2)

Vis(𝑒1, 𝑘1) 𝑢≈ Vis(𝑒2, 𝑘2)
=========================================================================================== Vis

Figure 1. Equivalence up-to-cutoff (≈𝑢
), parameterized by

𝑅, Φ, Ψ, 𝐶𝑙
and 𝐶𝑟

.

makes limited use of event layering, as we leaned signifi-

cantly on reuse of existing low-level proofs. Indeed, on top of

≈𝑢
𝑅
, we relied on a form of Relational Hoare Logic, originally

introduced in [5] which we specialized to ITrees, allowing

us to obtain proofs that are comparatively similar to those

originally made with the inductive big-step semantics. With

the notable exception of inlining, it was possible to make

our proofs relying on coinductive lemmas that were either

provided by [1] or did not pose particular challenges.

Our compiler correctness statements, which we basically

proved by induction on source 𝑝 for the single passes, then

gluing the pieces together by transitivity, have general form:

∀𝑝 𝑠 𝑠′, 𝑠 𝑅 𝑠′ → ⌈𝑝⌉𝑠 ≈𝑢
𝑅ΦΨ𝐶𝐹𝐶∅

⌈𝑝′⌉𝑠′

While our proofs follow in the footsteps of forward simu-

lation given the determinism of the target, the double-sided

character of ≈𝑢
𝑅
can equally support backward reasoning,

allowing us to backward-match cutoff-set target errors with

any further source behaviour. We proved a generalized form

of transitivity:

⊢Γ ∀𝑒, ¬(𝐶𝑟
1
𝑒 ∧𝐶𝑙

2
𝑒) ⊢Γ ∀𝑒𝑒′, 𝑒 Φ1 𝑒

′ ∧𝐶𝑙
2
𝑒′ → 𝐶𝑙

1
𝑒

⊢Γ ∀𝑒𝑒′, 𝑒 Φ2 𝑒
′ ∧𝐶𝑟

1
𝑒 → 𝐶𝑟

2
𝑒′

⊢Γ 𝑡 ≈𝑢

𝑅1Φ1Ψ1𝐶
𝑙
1
𝐶𝑟
1

𝑡 ′ ⊢Γ 𝑡 ′ ≈𝑢

𝑅2Φ2Ψ2𝐶
𝑙
2
𝐶𝑟
2

𝑡 ′′

⊢Γ 𝑡 ≈𝑢

(𝑅1◦𝑅2 ) (Φ1◦Φ2 ) (Ψ1◦Ψ2 )𝐶𝑙
1
𝐶𝑟
2

𝑡 ′′

As far as UB-related non-determinism goes, this property

could help us in combining together backward and forward

reasoning, possibly relaxing safety preservation to integrate

with safety analysis on targets.

As future work, we want to cover the Jasmin back-end

(which includes linearization). ≈𝑢
𝑅
can also be used to re-

late trees up to cutoff-determined prefixes, possibly making

step-indexing easier, and indeed we are interested in the

comparison with step-indexing and fuel-based inductive se-

mantics [8], as well as in safety analysis.



Interaction Trees and Verified Compilation

References
[1] 2025. Interaction Trees, GitHub Repository. https://github.com/

DeepSpec/InteractionTrees
[2] 2025. Jasmin, GitHub Repository. https://github.com/jasmin-lang/

jasmin
[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,

Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-

Assurance and High-Speed Cryptography. In Proc. ACM Computer
and Communication Security (CCS 2017), Bhavani Thuraisingham,

David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1807–1823.

https://doi.org/10.1145/3133956.3134078
[4] Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve

Zdancewic. 2024. A Two-Phase Infinite/Finite Low-Level Memory

Model: Reconciling Integer-Pointer Casts, Finite Space, and undef at

the LLVM IR Level of Abstraction. Proc. ACM Program. Lang. 8, ICFP
(2024), 789–817. https://doi.org/10.1145/3674652

[5] Nick Benton. 2004. Simple relational correctness proofs for static

analyses and program transformations. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and Xavier

Leroy (Eds.). ACM, 14–25. https://doi.org/10.1145/964001.964003
[6] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott

Owens. 2014. CakeML: a verified implementation of ML. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 179–192.

https://doi.org/10.1145/2535838.2535841

[7] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107–115.

[8] Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam

Tan. 2016. Functional Big-Step Semantics. In Proceedings of the 25th
European Symposium on Programming Languages and Systems - Volume
9632. Springer-Verlag, Berlin, Heidelberg, 589–615. https://doi.org/10.
1007/978-3-662-49498-1_23

[9] Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott.

2023. Interaction Tree Specifications: A Framework for Specify-

ing Recursive, Effectful Computations That Supports Auto-Active

Verification. In Proc. ECOOP 2023 (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi

(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 30:1–30:26.

https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
[10] Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever:

termination-sensitive specifications for interaction trees. Proc. ACM
Program. Lang. 5, POPL (2021), 28 pages. https://doi.org/10.1145/
3434307

[11] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory

Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020. Interac-

tion trees: representing recursive and impure programs in Coq. Proc.
ACM Program. Lang. 4, POPL (2020), 51:1–51:32. https://doi.org/10.
1145/3371119

[12] Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal

reasoning about layered monadic interpreters. Proc. ACM Program.
Lang. 6, ICFP (2022), 254–282. https://doi.org/10.1145/3547630

[13] Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, VadimZaliva,

and Steve Zdancewic. 2021. Modular, compositional, and executable

formal semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP
(2021), 1–30. https://doi.org/10.1145/3473572

https://github.com/DeepSpec/InteractionTrees
https://github.com/DeepSpec/InteractionTrees
https://github.com/jasmin-lang/jasmin
https://github.com/jasmin-lang/jasmin
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3674652
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572

	Abstract
	References

