Interaction Trees and Verified Compilation
Extended Abstract

Paolo Torrini, INRIA Sophia-Antipolis, France
Benjamin Gregoire, INRIA Sophia-Antipolis, France
Paolo.Torrini@inria.fr
Benjamin.Gregoire@inria.fr

Abstract

We have used Interaction Trees (ITrees) to formalize and
verify the front-end of the Jasmin compiler, relying on an
integration of coinductive denotational semantics with Re-
lational Hoare Logic. A crucial element in our approach is
the definition of an appropriate relation to compare pro-
grams, which makes it possible to simplify the reasoning
about undefined behaviour.

ITrees [11] can be used to reason denotationally about pos-
sibly diverging programs in an executable, modular way,
thus providing an attractive alternative to the operational
semantics used in major verified compilation projects such
as CompCert [7] and CakeML [6]. The coinductive datatype
itree E V, parameterized by a type family of events E and
a final result type V, represents computations as trees with
possibly infinite branches. A leaf Ret v is termination with
value v : V. A unary node Tau t is a silent transition step
which continues with ¢ : itree E V. A multi-branching node
Vis A e k is a computation that executes the event e : E A
and feeds the answer to the continuation k : A — itree E V.
Being monad themselves, ITrees can be executed by layer-
ing monadic interpreters, each associated with a handler for
a subfamily of events. Generalized recursion can be repre-
sented as corecursive interpretation of call events relying
on a monadic iterator. Failures can be represented as events
that return in the null type, to be interpreted using an error
monad transformer. ITrees facilitate coinductive reasoning
through a rich equational theory [1]. Modularity is supported
by disjoint unions of event families (e.g. E;+’ E;) and interpre-
tation layers, possibly associated with monad transformers.
Jasmin [2, 3] is a comparatively low-level language in-
tended for security applications, designed to give the pro-
grammer explicit control on the generation of assembly code.
It includes operators and instructions on memory and reg-
isters, conditional statements, while loops, internal and ex-
ternal function calls. It is formalized in Rocq with a fully
verified compiler based on a big-step semantics for terminat-
ing programs and a concrete memory model. In order to lift
the termination restriction, we defined a new semantics with
ITrees and used it to verify so far the compiler front-end,
based on a language that remains syntactically the same
while being semantically interpreted differently after each
pass (more than twenty ones, including constant propaga-
tion, dead code elimination, inlining and stack allocation).

Reasoning about compilation relies on the definition of
behavioural equivalence between source and target, which
can be used either for forward or backward reasoning. Some
subtlety is involved in dealing with abnormal termination.
Compilation is meant to preserve normal behaviour, but in
general the compiler may not worry about what happens
when the source throws a run-time error. Indeed, compiler
correctness proofs are often restricted to safe executions, i.e.
those that do not terminate abnormally. Verified compilation
is meant to preserve safety as part of behaviour preservation,
and therefore it suffices to assume that the initial source
is safe. However, the safety restriction makes proofs less
general and can complicate compositionality. In order to
lift this restriction, in our verification we use a notion of
program equivalence which makes it possible to express that
the compiled code behaves like the source only up to events
called cutoffs. Cutoff events can be used to represent source
errors which are meant to be matched with any behaviour in
the target, as causal instances of undefined behaviour (UB).
Notice that unlike C and LLVM, Jasmin has a deterministic
semantics, but interpreting failure as UB helps to make the
semantics simpler.!

The ITree library [1] provides generalizations of bisim-
ilarity, both strong (=) and weak (=g, called equivalence
up-to-tau), parameterized by a relation R between result
types, allowing for trees which are heterogeneous in the
returned value types to be related, provided they use the
same events. Instantiating R with equality gives us the usual
strong and weak bisimilarity. The fact that, regardless of
R, related events must be equal, makes it hard to directly
relate function calls across a translation while keeping into
account differences in the types of call arguments and results.
A way around this problem, showcased in [4, 11-13] consists
in layering interpretations, separating a common ground of
ITrees based on the same events which can be compared
directly, from higher-level layers which need to be compared
in terms of more complex notions of refinement, also using
predicates on ITrees [4, 13] to account for non-determinism
(a problem we do not need to deal with). A more intensional
way to relate programs is given by the event-heterogeneous
relation introduced in [10], used in [4, 9] and here denoted
~p, as a generalization of ~g which is parameterized by two
additional relations: a precondition specifying which events

1Unlike [4] we do not consider time-travelling UB.

can be related, inclusive of their inputs, and a postcondition
which is expected to hold between the outputs of event exe-
cution. ~f makes it possible to capture structural similarity
more directly, yet it does not let us interpret source errors as
UB, as it does not allow relating a terminating program with
a silently non-terminating one. While needed with normal
termination, this restriction is unnecessary when dealing
with an abnormal one.

We can answer this problem by a generalization of ~}, de-
noted ~%, which we call equivalence up-to-cutoff. As much as
~g and z;, z}‘z is coinductively defined as the greatest fixed
point of an inductive relation. Its definition is illustrated in
Figure 1, where a single bar means that the hypothesis is used
inductively, while a double bar means that it is used coin-
ductively (or simply non-inductively). ~ can relate wholly
heterogeneous trees t; : itree E; V; and t; : itree E; V5. The
rules ReT, Tau, Tau;, Tau,, and Vis are those of z;. RET
allows relating return values by R. In the Vis rule, ® acts
as relational precondition and ¥ as postcondition for the
event handlers used to interpret the events. As in [10, 11]
the fact that rules Tau; and TAu, rely on their hypothesis
inductively ensures that the related trees can only differ up
to a finite number of silent steps. Specifically to ~%, there
are as additional parameters two Boolean predicates C! on
E; events and C” on E, ones, deciding which are the cutoffs
on each side, and two additional rules Cut; and CuT,, which
allow for a cutoff to be related with any tree.? ~% supports
setoid rewriting, enjoys structural properties, monotonicity,
transitivity, and it is preserved by interpretation (Intr) for
related handlers (hy, hy):

51 %g ty — (Veleg. hi e %}é hs 62) -]ntrhl t z}é |ntrh2 ty

Our intended semantics for Jasmin is to relate a source
failure to any behaviour of the target program beyond that
point. Using ~}, it suffices to declare source failures as cut-
off events. We write >, . ., ., for the fully parameterized
relation. We also write [p;]s,;, depending on state s; : S;, for
the semantic interpretation of program p; : L (after the i-th
pass) as an ITree of type itree (F +' G) S; where F is the type
family of failure events. Further writing R; for the relation
between states across the pass, ®; for the precondition that
holds between events and ¥; for the corresponding postcon-
dition, Cr for the predicate that sets F events as the only
cutoffs and Cy as the predicate that sets no cutoffs, the verifi-
cation of a two-pass compilation (where related events may
differ even if they belong to the same family) can be built
transitively out of two components:

Fr fPo]su z?ﬁdﬁ‘l’lCFC@ [Pl]sl Fr |—P1-|sl z?zchz\ychc@ |—P2-|sz

kr [pols, zl(lRloRz)(‘I)l“I’z)(‘Plo‘l’z)CFCm [P21s,

This principle holds regardless of the events in G (which
are still uninterpreted). Nonetheless, our current verification

2 A more specific form of this relation was already used in [4].

P. Torrini, B. Gregoire

rtRr h £ ty
RET = TAU

Ret(r1) ~ Ret(r) Tau(t;) ~ Tau(ty)

Cler)
Vis(el, kl) ; to

C"(e2)
CUTZ —_— Cut,
h =~ ViS(eZ,kz)

t1 g to t1 ; to
Tau; —— Tau,

Tau(ty) ~ %) 51 ~ Tau(t2)

Yor 0. (e1,01) ¥ (e2,02) = k1(v1) ~ ka(v2)

Vis(ey, k1) ~ Vis(ey, k)

e1 Dey

Figure 1. Equivalence up-to-cutoff (=), parameterized by
R @, ¥, Cland C.

makes limited use of event layering, as we leaned signifi-
cantly on reuse of existing low-level proofs. Indeed, on top of
z}‘e, we relied on a form of Relational Hoare Logic, originally
introduced in [5] which we specialized to ITrees, allowing
us to obtain proofs that are comparatively similar to those
originally made with the inductive big-step semantics. With
the notable exception of inlining, it was possible to make
our proofs relying on coinductive lemmas that were either
provided by [1] or did not pose particular challenges.

Our compiler correctness statements, which we basically
proved by induction on source p for the single passes, then
gluing the pieces together by transitivity, have general form:

Vpss', sRs" = [pls rewcpe, P15

While our proofs follow in the footsteps of forward simu-
lation given the determinism of the target, the double-sided
character of ~} can equally support backward reasoning,
allowing us to backward-match cutoff-set target errors with
any further source behaviour. We proved a generalized form
of transitivity:

br Ve, =(C] e A Cé e) FrrVee, ed;e A Cé e — C{ e
br Vee’, ey e’ ACl e — Cj e’
’”

brot =% t’ brt’ =%
U5 Ry cler 5 Tro,wcicy

brt =% :
(R1oRz) (@10®2) (¥10¥2)C Cy

"

As far as UB-related non-determinism goes, this property
could help us in combining together backward and forward
reasoning, possibly relaxing safety preservation to integrate
with safety analysis on targets.

As future work, we want to cover the Jasmin back-end
(which includes linearization). ~% can also be used to re-
late trees up to cutoff-determined prefixes, possibly making
step-indexing easier, and indeed we are interested in the
comparison with step-indexing and fuel-based inductive se-

mantics [8], as well as in safety analysis.

Interaction Trees and Verified Compilation

References

2025. Interaction Trees, GitHub Repository.
DeepSpec/InteractionTrees

2025. Jasmin, GitHub Repository. https://github.com/jasmin-lang/
jasmin

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,
Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-
Assurance and High-Speed Cryptography. In Proc. ACM Computer
and Communication Security (CCS 2017), Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1807-1823.
https://doi.org/10.1145/3133956.3134078

Calvin Beck, Irene Yoon, Hanxi Chen, Yannick Zakowski, and Steve
Zdancewic. 2024. A Two-Phase Infinite/Finite Low-Level Memory
Model: Reconciling Integer-Pointer Casts, Finite Space, and undef at
the LLVM IR Level of Abstraction. Proc. ACM Program. Lang. 8, ICFP
(2024), 789-817. https://doi.org/10.1145/3674652

Nick Benton. 2004. Simple relational correctness proofs for static
analyses and program transformations. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2004, Venice, Italy, January 14-16, 2004, Neil D. Jones and Xavier
Leroy (Eds.). ACM, 14-25. https://doi.org/10.1145/964001.964003
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. 2014. CakeML: a verified implementation of ML. In The
41st Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, Suresh Jagannathan and Peter Sewell (Eds.). ACM, 179-192.
https://doi.org/10.1145/2535838.2535841

https://github.com/

(7]
(8]

(9]

[10]

[11]

[12]

[13]

Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107-115.

Scott Owens, Magnus O. Myreen, Ramana Kumar, and Yong Kiam
Tan. 2016. Functional Big-Step Semantics. In Proceedings of the 25th
European Symposium on Programming Languages and Systems - Volume
9632. Springer-Verlag, Berlin, Heidelberg, 589-615. https://doi.org/10.
1007/978-3-662-49498-1_23

Lucas Silver, Eddy Westbrook, Matthew Yacavone, and Ryan Scott.
2023. Interaction Tree Specifications: A Framework for Specify-
ing Recursive, Effectful Computations That Supports Auto-Active
Verification. In Proc. ECOOP 2023 (Leibniz International Proceedings
in Informatics (LIPIcs), Vol. 263), Karim Ali and Guido Salvaneschi
(Eds.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 30:1-30:26.
https://doi.org/10.4230/LIPlcs.ECOOP.2023.30

Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever:
termination-sensitive specifications for interaction trees. Proc. ACM
Program. Lang. 5, POPL (2021), 28 pages. https://doi.org/10.1145/
3434307

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. 2020. Interac-
tion trees: representing recursive and impure programs in Coq. Proc.
ACM Program. Lang. 4, POPL (2020), 51:1-51:32. https://doi.org/10.
1145/3371119

Irene Yoon, Yannick Zakowski, and Steve Zdancewic. 2022. Formal
reasoning about layered monadic interpreters. Proc. ACM Program.
Lang. 6, ICFP (2022), 254-282. https://doi.org/10.1145/3547630
Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim Zaliva,
and Steve Zdancewic. 2021. Modular, compositional, and executable
formal semantics for LLVM IR. Proc. ACM Program. Lang. 5, ICFP
(2021), 1-30. https://doi.org/10.1145/3473572

https://github.com/DeepSpec/InteractionTrees
https://github.com/DeepSpec/InteractionTrees
https://github.com/jasmin-lang/jasmin
https://github.com/jasmin-lang/jasmin
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1145/3674652
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.4230/LIPIcs.ECOOP.2023.30
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3434307
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3547630
https://doi.org/10.1145/3473572

	Abstract
	References

