
A library for the automated transformation of Rocq AST

Alexandre Jean*

Lab. ICube UMR 7357 CNRS Université de Strasbourg, France

The goal of an interactive theorem prover such as Rocq is to allow users to write proofs interactively,
but this interaction often ends once the proof is completed. This is partly because interactive theorem
provers are used to verify results that come from paper proofs. Once the verification is done, the proofs
are are usually left untouched and only serve to confirm the correctness of the results. But this is also
due to the inherent difficulty of modifying proofs, as changing earlier tactics can cause cascading errors
later in the proof, and the process usually involves trial and error.

One solution to avoid manually modifying proofs is to write mechanized transformations, automating
as much of the refactoring process as possible. Automatic transformation of Rocq code is an emerging
topic, with multiple implementations in recent papers. One example of such transformation is turning a
proof using a single tactic constructed by combining tactics with tacticals such as ; and [] into a proof
made from the elementary tactics in that constructed tactic. This approach has been implemented by both
Magaud et al. and Shi et al. [4, 5].

Both implementations use different approaches, with Shi et al. using a custom grammar to parse
Ltac and Magaud et al. using anonymous pipes to communicate with Serapi [2], a library and protocol
for interacting with a Rocq process. The fact that these implementations use different methods motivated
us to write a library capable of writing various kinds of transformations on Rocq abstract syntax trees
(ASTs) without having to start from scratch each time.

We first looked at what libraries existed in Rocq and OCaml to see if we could use some of them
to build on. We wanted a library capable of rewriting whole documents, which excluded simply writing
Ltac. While there exist multiple meta-programming libraries in Rocq, such as coq-elpi [7] or Meta-
Coq [6], our requirements included support for speculative execution, meaning being able to parse
potentially invalid code, severely limiting our options. We decided to base our library, Rocq-ditto on
rocq-lsp [3], a library that provides a way to parse a Rocq file and get a Rocq AST as well as a way to
do speculative execution. Rocq-lsp also supports quoting and unquoting, the action of turning a string
into its AST representation and vice versa.

We developed Rocq-ditto alongside a set of transformations to validate the utility of the concepts we
implemented. One example of such transformation is one to replace each call to the tactic intros with
intros V1 V2 . . . Vn where each Vi corresponds to a variable automatically introduced by intros. We
use this transformation as a running example to illustrate our library throughout the remainder of this
abstract.

The first step of any transformation is to transform the AST produced by Rocq-lsp into a document
structure D. This structure contains a list of all the AST nodes of depth zero, tagged with their position
in the file and a unique identifier.

From D, we extract a list of proofs, where a proof is a structure made of a proposition to prove and
of a list of tactics and commands used in the proof of this proposition.

We formally define a proof transformation as a function f : proof → transformation_step list
which takes a proof as input and returns a list of transformation steps drawn from the set:

{Remove(id), Replace(id, new_node), Add(new_node),

Attach(new_node, attach_position, anchor_id)}

*alexandre.jean@unistra.fr

1



where Remove(id) removes the node with the identifier id, Replace(id, new_node) replaces it by
new_node and Add(new_node) insert new_node at a fixed position the document.

Attach(new_node, attach_position, anchor_id) places new_node on a position relative to the
node with the id anchor_id. We added Attach because Add uses a fixed position and is therefore
neither commutative nor associative.

These transformation steps can then be applied to D with each associated function moving the other
nodes in D to guarantee that the final document remains valid. The functions also try to minimize the
number of empty lines and spaces that may be introduced by removing or replacing a node.

To compute the steps of our transformation, we first need to identify which steps in each proof are
intros tactics. This is achieved by quoting each proof nodes and checking whether its string representation
matches the text representation of ‘intros‘.

The intros tactics will automatically name and introduce variables to the context after it’s run. So, to
get the names of the variables introduced, we run each node in the proof consecutively, associating with
each the state of the proof after its execution. Then, we obtain Vprev, the set of variables in the state of
the node before the intros node and Vintros, the set of variables in the state of the intros node. To obtain
the new variables introduced by intros, we compute the difference Cintros ∖Cprev of the two sets. Once
we have the name of the new variables, we construct the new intros step, by concatenating the name of
each of the new variables to the string ‘intros‘, we then use a quoting function to turn this string into an
AST node and wrap it inside a Replace step. The transformation then simply returns a list of Replace
steps where each step matches an intros tactic inside the proof.

In conclusion, while Rocq-ditto is still at an experimental stage, it already enables the implementa-
tion of simple transformations such as the one presented here, as well as more complex ones such as a
transformation to replace instances of auto with the explicit steps found by the auto proof search. In
future work, we aim to improve the usability of Rocq-ditto and develop new transformations with the
objective of releasing it as an open-source tool. We are also interested in exploring alternative forms of
proof representation, such as the structure of hiproof [1].

References

[1] Ewen Denney, John Power, and Konstantinos Tourlas. Hiproofs: A Hierarchical Notion of Proof
Tree. Electronic Notes in Theoretical Computer Science, 155:341–359, 2006. Proceedings of the
21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI).

[2] Emilio Jesús Gallego Arias. SerAPI: Machine-Friendly, Data-Centric Serialization for COQ. work-
ing paper or preprint, October 2016.

[3] Emilio Jesús Gallego Arias, Ali Caglayan, Shachar Itzhaky, Fréderic Blanqui, Rodolphe Lepigre,
et al. rocq-lsp: a Language Server for the Rocq Prover, 2025.

[4] Titouan Lozac’h and Nicolas Magaud. Post-processing Coq Proof Scripts to Make Them More
Robust. In 2nd Workshop on the development, maintenance, refactoring and search of large libraries
of proofs , September 13-14, 2024, Tbilissi, Georgia, 2024.

[5] Jessica Shi, Cassia Torczon, Harrison Goldstein, Andrew Head, and Benjamin Pierce. Designing
Proof Deautomation in Rocq. In Proceedings of the 15th Workshop on Evaluation and Usability of
Programming Languages and Tools (PLATEAU), 2025.

[6] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian Kunze,
Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The MetaCoq Project. J. Autom. Rea-
son., 64(5):947–999, June 2020.

[7] Enrico Tassi. Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog
dialect). In The Fourth International Workshop on Coq for Programming Languages, Los Angeles
(CA), United States, January 2018.


