hotdocX & jsCoq — A Platform for Interactive, Al-
Augmented, and Monetizable Coq Experiences

The hotdocX Authors

Abstract

The dissemination of and interaction with Coq developments remains a significant challenge,
often confined to static documents or code repositories that lack dynamism. We present an
experience report on integrating Coq into hotdocX, a novel web platform that transforms
documents into interactive, Al-augmented applications. By leveraging a jsCoq template within
the hotdocX ecosystem, we create a new paradigm for "live" formal artifacts. This enables not
only interactive educational tutorials and "papers-with-proofs" but also a creator economy for
formal methods content. Furthermore, we explore the profound synergy between the browser-
native jsCoq and Emdash, hotdocX's own dependently-typed logical framework. This opens a
tangible pathway towards a browser-editable, extensible Coq-light kernel, presenting new

opportunities for research in tactic development, meta-theory, and education.
1. Introduction

The Coq proof assistant is a cornerstone of formal verification and computer-aided proof.
However, the fruits of this labor—the formalizations themselves—are often difficult to share and
engage with beyond the community of expert users. They typically exist as code repositories or
are flattened into static PDFs, losing the rich, interactive nature of the original proof
development. Past initiatives like Yves Bertot's "Coq Exchange" [11] and the "Coq Platform
Docs" [12] have highlighted the community's desire for more dynamic and accessible platforms
for sharing Coq content.

This paper reports on our work to address this challenge by interfacing Coq with hotdocX [3], an
Al-powered social events marketplace designed to transform documents into interactive web
applications. hotdocX uses an in-browser IDE (Sandpack) to render "events" which are live,
runnable applications generated from user-provided documents (PDFs, LaTeX, text) and Al
prompts. By creating a jsCoq template for this platform, we enable any Coq script to become a
first-class, interactive, and shareable hotdocX event.

Our contribution is threefold:

1. An experience report on the practical aspects of interfacing with jsCoq in a modern web
sandbox environment, including technical hurdles and their solutions.

2. A demonstration of a new application platform for Coq that supports novel use cases in
education and research dissemination, including a creator economy via virtual currency.

3. A vision for future work where the browser-based nature of jsCoq and hotdocX's native
logical framework, Emdash [4], converge towards a new kind of interactive, browser-

native proof assistant kernel.
2. The hotdocX Platform

hotdocX is a serverless web application built on Convex and React. Its core concept is the Al
Template. A user selects a template, provides source documents (e.g., from a native upload,
SharePoint, GitHub, or arXiv), and adds a natural language prompt. The hotdocX backend,
powered by Google's Gemini Al, orchestrates a content generation pipeline to produce a set of

files for an interactive Sandpack application.

The template system is highly flexible. For example, the arrowgram-paged template [7, 10]
can take a description of a commutative diagram, generate a JSON specification for it, and
render it as an SVG within a paginated, two-column PDF-style document complete with KaTeX-
rendered mathematics and Mermaid conceptual diagrams. The emdash template [8, 9] allows
users to interactively experiment with a novel, dependently-typed functorial programming
language directly in the browser. This architecture provides a rich context for embedding formal
methods tooling.

3. Interfacing with Coq: An Experience Report

Our goal was to create a jsCoq template to make Coq a first-class citizen of the hotdocX
ecosystem. The implementation, found in convex/lib/templates/templates_jsCoq.ts,
uses the jsCoq CDN to load the environment and then fetches a user-provided Coq script (e.g.,
/public/index. V) to initialize the session. The result is a live, interactive Coq proof session,
embedded within a hotdocX event [6].

A significant challenge arose during this integration. We discovered that versions of jsCoq after
0.15.1 (specifically, the move to ES Modules in ©.16.0) introduced a "Cannot use

'import.meta’ outside a module" error within the Sandpack environment. Consequently, our
current implementation is pinned to jscoq@®@.15.1. While this works, it highlights a practical
friction point for developers seeking to embed jsCoq in modern sandboxed web applications.
Overcoming this would be a valuable contribution, enabling the broader community to more

easily build tools on the latest jsCoq versions.
This integration immediately creates powerful new workflows:

¢ Education: An instructor can create a hotdocX event containing a lecture (as a PDF), a set
of Coq exercises (exercises.v), and an Al prompt like "Create a tutorial from the
lecture and load the exercises into the jsCoq environment." Students can then interact with
the tutorial and solve exercises entirely in the browser. Using hotdocX's creator economy
features, the instructor could even place the solutions behind a "pay-to-view" paywall
using virtual coins.

¢ Research: A researcher can publish a paper on arXiv and simultaneously create a hotdocX
event that links to it. The event could contain a jsCoq session pre-loaded with the key
definitions and lemmas from the paper, allowing readers to experiment with the

formalization directly. This moves beyond "papers-with-code" to "papers-as-apps".

4. Future Work: Towards a Browser-Native Coq-light Kernel

The most exciting prospect arises from the synergy between jsCoq and Emdash [4], the native
logical framework of hotdocX. Emdash is a dependently typed language inspired by Kosta
Dosen's functorial programming [1, 2], implemented in TypeScript and formally specified in a
Lambdapi dialect [5]. It features a bidirectional type checker, unification-based hole solving, and

a novel "functorial elaboration" mechanism that verifies coherence laws definitionally.

Both Emdash and jsCoq are designed to run in the browser. Emdash's kernel is written in
TypeScript, making it natively inspectable and extensible in a JavaScript environment. This
presents a unique opportunity for convergence. We propose a research program focused on

creating a hybrid Emdash/Coq-light kernel.

The path involves systematically augmenting the Emdash kernel, which is already a All-calculus
modulo theory, with the constants, reduction rules, and inductive types of the Calculus of
Inductive Constructions (CIC). Because Emdash's definitional equality is already extensible via

user-supplied rules, this process can be done incrementally.

The implications of a browser-native, hackable Cog-light kernel are significant:

e Education: It would provide an unparalleled tool for teaching the theory of CIC. Students
could inspect, modify, and experiment with the kernel's rewrite rules and term structures
directly in the browser, without a complex local build environment.

¢ Research on Coq: It would create a rapid prototyping environment for new language or
tactic features. A researcher could implement a new tactic or a modification to the
conversion algorithm in TypeScript and immediately test it in a live Coq-like environment,
dramatically shortening the feedback loop.

o Al-Assisted Formalization: An Al agent could more easily interact with a native
JavaScript/TypeScript kernel than by parsing the string output of a compiled binary. This

could lead to more sophisticated Al-driven tools for proof synthesis and tactic generation.

5. Conclusion

By interfacing jsCoq with the hotdocx platform, we have developed a novel, practical, and
powerful new way to share, teach, and interact with Coq formalizations. Our experience provides
a concrete use case that highlights both the promise and the practical hurdles of embedding
jsCoq in modern web applications. Looking forward, the co-location of jsCoq and the emdash
logical framework within the same browser-native ecosystem offers a compelling roadmap

towards a new generation of interactive, extensible, and accessible theorem proving tools.

References

[1] Dosen, K. & Petric, Z. (1999). Cut-Elimination in Categories.
[2] Dosen, K., & Petri¢, Z. (2004). Proof-Theoretical Coherence. KCL Publications.
[3] hotdocX Project. https://hotdocx.github.io
[4] hotdocX Team. (2024). Emdash: A Dependently Typed Logical Framework.
https://github.com/hotdocx/emdash

[5] 1337777. (2024). Emdash Specification in Lambdapi.
https://github.com/1337777/cartier/blob/master/cartierSolution18.1p

[6] hotdocX Example. (2024). jsCoq Interactive Session.
https://hotdocx.github.io/#hdx/25191CHRI43000

[7] hotdocX Example. (2024). Arrowgram Al Template.

https://hotdocx.github.io/#/hdx/25188CHRI26000
[8] hotdocX Example. (2024). Emdash Re-formattable Example.

https://hotdocx.github.io/
https://github.com/hotdocx/emdash
https://github.com/1337777/cartier/blob/master/cartierSolution18.lp
https://hotdocx.github.io/#/hdx/25191CHRI43000
https://hotdocx.github.io/#/hdx/25188CHRI26000

https://hotdocx.github.io/#/hdx/25188CHRI25004

[9] hotdocX Example. (2024). Emdash Experiment-able
https://hotdocx.github.io/#/hdx/25188CHRI27000

[10] Arrowgram Project. https://github.com/hotdocx/arrowgram

[11] Bertot, Y. (2019). Cog Exchange. https://project.inria.fr/cogexchange/news/
[12] Lamiaux, T. (2025). Coq Platform Docs. https://cog.inria.fr/docs/platform-docs

Example.

https://hotdocx.github.io/#/hdx/25188CHRI25004
https://hotdocx.github.io/#/hdx/25188CHRI25004
https://hotdocx.github.io/#/hdx/25188CHRI27000
https://github.com/hotdocx/arrowgram
https://project.inria.fr/coqexchange/news/
https://coq.inria.fr/docs/platform-docs

