Can States Be Decidable in Inquisitive Mechanizations?
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1 Introduction

Inquisitive logic [4, 2] provides a framework for studying
both declarative and interrogative sentences in one setting
using inquisitive disjunction \V and the inquisitive existen-
tial quantifier 3. Borrowing our examples from Litak and
Sano [7] and asuming S(z,y) is the predicate “z sings for
y”, e denotes Eric Clapton and g denotes Gottlob Frege,
we write “Does Eric Clapton sing for Gottlob Frege?” as

?S(e,g) := S(e, 9) v =S(e, g).

The question “Who is some person that Clapton sings
for?” is rendered as 3 xz.S(e,z), while “Which are the
people Clapton sings for?” as Vz.?S5(e, z), and “Is Clap-
ton singing for everybody?” as ?Vx.S(e, x). In its support
semantics, inquisitive formulae are interpreted by infor-
mation states which are sets of classical first-order models
(over a fixed domain). These models themselves are con-
sidered to be possible worlds. Note that one can restrict
information states to be finite, which leads to bounded in-
quisitive logic; further restriction of semantics to at most
n possible worlds (note no restriction on the cardinality of
the domain of individuals!) is called n-boundedness.

When mechanizing calculi with such semantics in Rocq,
the representation of states is crucial. Using our Autosubst-
based [9] formalization [8] of a labelled sequent calculus
proposed by Litak and Sano [7] as a case study!, we dis-
cuss whether one can/should use boolean predicates of
type World — bool (decidable by definition), or rather ar-
bitrary functions of type World — Prop.

2 Preliminaries

Definition 1 (§R). The set of formulae F is defined via
the BNF

pu=P@) | Llo—=oloholoVe|Va.po| Iz

where T € Var”™ is a tuple of variables and P is a n-ary
symbol from the signature Pred.

Remark 2. We use arity types to represent arities of
predicate symbols (and function symbols; cf. Footnote 2).
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Figure 1: Split rules

Thus, predicate formulae are implemented via dependent
types using argument functions. This motivates a se-
toid based development in order to provide a suitable
equality relation form_eq Consequently, we avoid
functional extensionality as additional axiom. Unfortu-
nately, Autosubst [9] uses this axiom internally, forcing
us to reprove some theorems regarding substitions, e.g.
hsubst_comp’ a

Definition 3 (). A model is a tuple
M = (Wm, Dm, j{m) 5

where Wyy, is a set of (possible) worlds, Degy is a non-empty
domain of individuals and Joy : Pred x Woy — Dy sends
each n-ary P to Jop(P,w) € P(Dy).

Definition 4 (a) Given a model 9, any s C Wyy is
an information state. Functions 7 : Var — Dgy are called

variable assignments. The support relation is defined as
follows:

M, s Ik, P(T) if
M, sk, Lif
M, sy o = if

n(z) € Jom (P, w) for every w € s
s=0

M, t I, @ implies M, t Iy 2

for every t C s

M, s by o and M, s |k ¢

M, s Iy @ or M, s 1y 2

M, s Iy zsq) ¢ for every d € Don

M, sy o A if
M, s by oWV if
M, s -y Va.pif

M, s by 3zpif M, sk, psq ¢ for some d € Doy.

3 Natural Deduction

Before we discuss our target sequent calculi for (n-boun-
ded) inquisitive logic, let us first have a look at a natural
deduction system proposed by Ciardelli and Grilletti [3]
(sound and complete for the same semantics) to see why
it poses a challenge to a decidable notion of state. It in-
cludes rules for \ and 3 from Figure 1, where « represents
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{V,;9), I'= A, (Y,9) | Y C X}
= A, (X,¢ =)

(=—)

Figure 2: The rule (=—)

a classical formula (i.e., one not involving these two con-
stants). They are used many times in the completeness
proof [3, Theorem 8.1]. Their soundness [4, Proposition
4.4.6] relies on the definition of the state

lalon == {w € Won | M, w I, a}

for a classical formula o and a model 9. It is easy to show
by a reduction from classical first-order logic that I is
undecidable. Therefore, we cannot use boolean predicates
to represent states in order to formalize the soundness
proof for this natural deduction system as we would not
even be able to define |aox.

4 Labelled Sequent Calculus

Litak and Sano [7, Table 2] provide a labelled sequent cal-
culus and subsequently prove it to be sound [7, Proposition
4.8] and complete [7, Proposition 5.6] with respect to n-
bounded semantics for each n (with a suitable cardinality
restriction on labels)?. To illustrate the difference with the
setup of Section 3, we discuss one clause from the Rocq
mechanization [8] of the soundness proof: namely, the one
corresponding to the rule presented in Figure 2.

Definition 5 (§R). We define the set of labelled formulae
as L := Pan (N) x F.

A pair T'; A G, L is called a sequent and as usual denoted
as [' = A.

Definition 6 ($R). Let 9 be a model, f: N — Wap,
1n: Var — Dgp, XCq,N and ¢ € F. Then, we define the
support for a labelled formula (X, ) as follows:

Let 9t be a model, f: N — Wyy, n: Var — Dgy and
I', ACg, Pan (N) x F. We write M, f Ik, I' = A to denote
that there is (X,¢) € A st. M, f Ik, (X, ) whenever
M, f I, (X, ) for all (X,p) el

Definition 7 (#R). Let I', A Cg, Pan (N) x F. We write
FT =AM flF, I' = A for every M, f: N = Wop
and 7: Var — Woy.

Now we can show that the right introduction rule for im-
plication is indeed sound.

2 In the paper, the signature is assumed to be purely relational.
The Rocq formalization [8] provides an experimental extension with
rigid function symbols (see also [5]).

Proposition 8 (a) Let XCgN, ¢, ¢ € F, M be a
model, f: N — Wyp and n: Var — Dgp be a variable
assignment. If M, f -, (Y, ), T = A, (Y,9) for every
Y C X, then we have M, f -, T' = A, (X, ¢ — ).

Proof. Without loss of generality, we assume that there
is no other (Z,x) € A such that 9, f I, (Z,x). Con-
sequently, we assume that 9, s I, ¢ for some s C f[X]
and show 9, s I, 9. By picking a label Y C X such that
f[Y] = s we can conclude the proof in an obvious way. [

Rocq requires that an appropriate label Y is explicitly
defined. In our approach, labels are implemented via lists
in a suitable way. Therefore, Y must also be constructed
as an explicit list. If the substate s C f[X] does not come
with a decision procedure, this is not possible.

5 Future Work

Once again, it appears that the availability of both Prop-
based properties and bool-based predicates allows for care-
ful choices tailored for specific formalisms, but may require
forethought from the user. As inquisitive logic is a rapidly
growing field still lacking formalizations in proof assistants
(and generally tool support), we hope that our preliminary
study paves the way for more work on the subject. The
present formalization focuses mostly on complex seman-
tic reasoning regarding the failure of schematic validity in
the bounded case [7, Section 3] and experiments in deriv-
ability of sequents. Regarding the former, op.cit. notes
that the very notion of a scheme used by Gabbay, She-
htman and Skvortsov [6, § 2.2-2.5] (following Bourbaki)
appears to resemble (a second-order version of) locally
nameless representation [1]. More work on mechanizing
non-classical predicate logics may provide rewarding in-
sights for all communities involved. As for the sequent
calculus itself, it would be of interest (if more demanding)
to fully mechanize metatheoretic results of Litak and Sano
[7, Section 5-6], in particular syntactic cut elimination
(Theorem 6.3). It is also worth mentioning that the ND
calculus briefly discussed in Section 3 achieves complete-
ness by means of heavily signature-dependent cardinality
formulae [3, Section 6]. There seems to be no straight-
forward way of deriving them in the (n-bounded version
of) sequent calculus of Litak and Sano [7], whereas the
ND calculus of Ciardelli and Grilletti [3] does not seem
tailored for deriving schematic validities; equipollence of
both calculi is at present merely a consequence of their sep-
arate completeness theorems. Finally, it is an open ques-
tion whether a sufficient condition for schematic validity
given by Litak and Sano [7, Theorem 4.11], i.e., derivabil-
ity without the atomic rule of the sequent calculus, is a
necessary one. Settling such questions seems an interest-
ing challenge for an extended version of our formalization
and design choices we make herein, especially our treat-
ment of signatures and arities (see Remark 2).
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