Lessons from Formalizing (Higher) Category Theory in UniMath

Benedikt Ahrens

jww Niels van der Weide

Coq Workshop 2024

2024–09–14

Summary

What are we^{$(*)$} doing?

- 1. Develop a library of category theory
- 2. In the UniMath library based on Coq
- 3. Based on univalent foundations

Challenges and observations

- 1. Modularity: how to reuse stuff?
- 2. The (un)importance of strictness
- 3. Transporting results along equivalences

(*) Besides Ahrens and Van der Weide, several others have been involved: Frumin, Lafont, Van der Leer, Lumsdaine, Maggesi, Matthes, Mörtberg, Wullaert,. . .

Outline

1 [Preliminaries](#page-2-0)

3 [Strictness versus Weakness](#page-9-0)

4 [Univalence](#page-13-0)

What is a category?

A category C consists of

- $\overline{1}$. A type C_0 of objects
- 2. For any $a, b: C_0$, a type $C(a, b)$ of morphisms from a to b
- 3. Composition $C(a, b) \rightarrow C(b, c) \rightarrow C(a, c)$
- 4. Identity C(*a*, *a*)
- 5. Laws: unitality and associativity of composition

Examples

- 1. Sets and functions
- 2. Groups and group homomorphisms
- 3. Types and terms of STLC

Outline

[Strictness versus Weakness](#page-9-0)

[Univalence](#page-13-0)

Reusing stuff

Reusing stuff in mathematics

"Composition of group homomorphisms is given by composition of the underlying functions."

Reusing stuff in computer formalization

- Algebraic hierarchies
- Add fields to extend to a structure with more operations or properties

Question

In category theory, we consider collections of all things and morphisms between them. What is a suitable mathematical structure for "adding fields" to objects and morphisms?

Displayed categories

Definition (Displayed category)

Let C be a category. A displayed category D over C is given by

- 1. for every object x : C_o , a type D_x of displayed objects over x
- 2. for every morphism $f : C(x,y)$ and objects $\overline{x} : D_x$ and $\overline{y} : D_y$, a type $D(\bar{x}, f, \bar{y})$ of displayed morphisms over *f* from \bar{x} to \bar{y}
- 3. composition and identity of displayed morphisms

4. laws

Definition (Total category)

Any displayed category D induces a total category $\int \mathsf{D}$ and a functor $\int D \rightarrow C$.

Example: displayed category of groups

The displayed category of group structures over the category of sets:

- Objects over set *X* are group structures on *X*
- Morphisms over $f : X \to Y$ from G_X to G_Y are proofs that f is a homomorphism from $G_{\!X}$ to $G_{\!Y}$

Total category

is the category of groups, with a forgetful functor to sets.

Example: displayed category of topologies

The displayed category of topologies over the category of sets:

- Objects over set *X* are topologies on *X*
- Morphisms over $f : X \to Y$ from T_X to T_Y are proofs that f is a continuous map from *T^X* to *T^Y*

Total category

is the category of topological spaces, with a forgetful functor to sets.

Displayed categories, layered

Using displayed categories, we can construct categories in a modular way:

Summary: displayed categories

- 1. We use displayed categories for modular constructions of categories, by layering many displayed categories
- 2. Structure on total category can be obtained from structure on base and "displayed" structure on displayed category
- 3. Same principle works for *higher* categories, such as bicategories
- 4. Literature:
	- *Displayed categories*, Ahrens, Lumsdaine
	- *Bicategories in univalent foundations*, Ahrens, Frumin, Maggesi, Veltri, Van der Weide
	- *Univalent monoidal categories*, Ahrens, Matthes, Wullaert

Outline

[Univalence](#page-13-0)

What do "strict" and "weak" mean?

A categorical structure is

strict when it preserves objects up to **equality**. **weak** when it preserves objects up to **isomorphism**.

Example

A monoidal category C has a binary operation ⊗ : $C \times C \rightarrow C$ and a unit I : C_{o} . It is called

strict when $X \otimes I = X = I \otimes X$

weak when $X \otimes I \cong X \cong I \otimes X$

Strictness versus weakness

In set-theoretic mathematics

- Strict structures are **more convenient**, because they are easier to use
- One does not lose generality: weak structures are equivalent to strict ones in many cases

Suppose we have

$$
X \xrightarrow{f} Y \otimes I \quad Y \xrightarrow{g} Z
$$

Can we write their composition $f \cdot g$?

Strictness versus weakness

In set-theoretic mathematics

- Strict structures are **more convenient**, because they are easier to use
- One does not lose generality: weak structures are equivalent to strict ones in many cases

Suppose we have

$$
X \xrightarrow{f} Y \otimes I \quad Y \xrightarrow{g} Z
$$

Can we write their composition $f \cdot g$?

• Set theory: sure, just write $f \cdot g$

• Type theory: **no**, *Y* ⊗ *I* and *Y* would need to be **convertible** This is a consequence of intensional equality.

Monoidal categories in intensional foundations

Instead you would write something like

$$
X \xrightarrow{f} Y \otimes I \xrightarrow{\rho} Y \xrightarrow{g} Z
$$

where ρ shows that $Y \otimes I = Y$ So:

- In essence, we are working with weak structures
- The advantages of strict structures evaporate

Reflecting on weakness versus strictness

- In intensional type theory, strict structures do not offer simplifications compared to strict structures
- It is natural to work with weak structures: bicategories instead of 2-categories, weak monoidal categories instead of strict ones,. . .
- In concrete examples, the additional bureaucracy is often trivial (i.e., given by identity isos)

Outline

[Preliminaries](#page-2-0)

[Strictness versus Weakness](#page-9-0)

Introduction to univalent foundations

Key features of univalent foundations

- Identity types are interpreted as ∞-groupoid structure
- Univalence axiom: identity of types is equivalence of types
- Univalence principle: identity of structures is the same as equivalence of structures

Example (Univalence principle for groups)

 $(G_{\text{I}} = G_{\text{2}}) \simeq (G_{\text{I}} \cong G_{\text{2}})$ for groups G_{I} and G_{2}

Example (Univalence principles for categories)

 $(C_1 = C_2) \simeq (C_1 \cong C_2)$ for set-categories C_1 and C_2 $(C_1 = C_2) \simeq (C_1 \simeq C_2)$ for univalent categories C_1 and C_2

Univalence principle for set-categories

Isomorphism of categories

An isomorphism from C_1 to C_2 consists of functors $F: C_1 \to C_2$ and $G: C_2 \to C_1$ such that $F \cdot G = id$ and $G \cdot F = id$ (**strict**)

Set-categories

In a setcategory, the type of objects is a set (identity types are subsingletons).

Theorem

$$
(C_{I} = C_{2}) \simeq (C_{I} \cong C_{2})
$$
 for set-categories C_{I} and C_{2}

Examples: syntactic categories of type theories

Univalence principle for univalent categories

Equivalence of categories

Equivalence from C_1 to C_2 consists of functors $F: C_1 \rightarrow C_2$ and $G: C_2 \to C_1$ such that $F \cdot G \simeq id$ and $G \cdot F \simeq id$ (weak)

Univalent categories

In a univalent category, identity of objects $a = b$ is the same as isomorphism $a \cong b$.

Theorem

 $(C_{I} = C_{2}) \simeq (C_{I} \simeq C_{2})$ *for univalent categories* C_{I} *and* C_{2}

Examples: the categories of sets, groups, rings

Transport of structure along sameness of categories

Transporting along isomorphisms

Given **setcategories** $C₁$ and $C₂$ and an **isomorphism** between them, every structure on $C_{\rm r}$ can be transported to $C_{\rm 2}$.

Transporting along adjoint equivalences

Given **univalent categories** *C*¹ and *C*² and an **adjoint equivalence** between them, every structure on $C_{\text{\tiny I}}$ can be transported to $C_{\text{\tiny 2}}.$

E.g., have an easy proof that adjoint equivalence preserves being Cartesian closed.

Summary: formalizing category theory in (univalent) type theory

- 1. Displayed categories can provide **modular** constructions
- 2. Strict categorical structures are not as useful as in set theory; it is more natural to work with **weak** categorical structures
- 3. Univalent foundations give us tools to reason formally modulo equivalence of categories

Thanks to the Coq team for support and patience!

Thanks to you for listening!