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Summary

What are we(*) doing?
1. Develop a library of category theory
2. In the UniMath library based on Coq
3. Based on univalent foundations

Challenges and observations
1. Modularity: how to reuse stuff?
2. The (un)importance of strictness
3. Transporting results along equivalences

(*) Besides Ahrens and Van der Weide, several others have been
involved: Frumin, Lafont, Van der Leer, Lumsdaine, Maggesi,
Matthes, Mörtberg, Wullaert,. . .
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What is a category?

A category C consists of
1. A type C0 of objects
2. For any a,b : C0, a type C(a,b) of morphisms from a to b
3. Composition C(a,b)→ C(b, c)→ C(a, c)
4. Identity C(a,a)
5. Laws: unitality and associativity of composition

Examples
1. Sets and functions
2. Groups and group homomorphisms
3. Types and terms of STLC
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Reusing stuff

Reusing stuff in mathematics
“Composition of group homomorphisms is given by composition of
the underlying functions.”

Reusing stuff in computer formalization
• Algebraic hierarchies
• Add fields to extend to a structure with more operations or

properties

Question
In category theory, we consider collections of all things and
morphisms between them. What is a suitable mathematical
structure for “adding fields” to objects and morphisms?



Displayed categories

Definition (Displayed category)
Let C be a category. A displayed category D over C is given by
1. for every object x : C0, a type Dx of displayed objects over x
2. for every morphism f : C(x,y) and objects x : Dx and y : Dy, a

type D(x, f ,y) of displayed morphisms over f from x to y
3. composition and identity of displayed morphisms
4. laws

Definition (Total category)

Any displayed category D induces a total category
∫

D and a
functor
∫

D→ C.



Example: displayed category of groups

The displayed category of group structures over the category of
sets:
• Objects over set X are group structures on X
• Morphisms over f : X→ Y from GX to GY are proofs that f is a

homomorphism from GX to GY

Total category
is the category of groups, with a forgetful functor to sets.



Example: displayed category of topologies

The displayed category of topologies over the category of sets:
• Objects over set X are topologies on X
• Morphisms over f : X→ Y from TX to TY are proofs that f is a

continuous map from TX to TY

Total category
is the category of topological spaces, with a forgetful functor to
sets.



Displayed categories, layered

Using displayed categories, we can construct categories in a
modular way:

Group

SetWithBinOp SetWithUnOp PtdSet

Set

× ×



Summary: displayed categories

1. We use displayed categories for modular constructions of
categories, by layering many displayed categories

2. Structure on total category can be obtained from structure on
base and “displayed” structure on displayed category

3. Same principle works for higher categories, such as
bicategories

4. Literature:
• Displayed categories, Ahrens, Lumsdaine
• Bicategories in univalent foundations, Ahrens, Frumin, Maggesi,

Veltri, Van der Weide
• Univalent monoidal categories, Ahrens, Matthes, Wullaert



Outline

1 Preliminaries

2 Modularity

3 Strictness versus Weakness

4 Univalence



What do “strict” and “weak” mean?

A categorical structure is
strict when it preserves objects up to equality.
weak when it preserves objects up to isomorphism.

Example
A monoidal category C has a binary operation ⊗ : C×C→ C and a
unit I : C0. It is called

strict when X ⊗ I = X = I⊗ X
weak when X ⊗ I ∼= X ∼= I⊗ X



Strictness versus weakness

In set-theoretic mathematics
• Strict structures are more convenient, because they are easier

to use
• One does not lose generality: weak structures are equivalent

to strict ones in many cases

Suppose we have

X
f
−→ Y ⊗ I Y

g
−→ Z

Can we write their composition f · g?

• Set theory: sure, just write f · g
• Type theory: no, Y ⊗ I and Y would need to be convertible

This is a consequence of intensional equality.
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Monoidal categories in intensional foundations

Instead you would write something like

X Y ⊗ I Y Z
f ρ g

where ρ shows that Y ⊗ I = Y
So:
• In essence, we are working with weak structures
• The advantages of strict structures evaporate



Reflecting on weakness versus strictness

• In intensional type theory, strict structures do not offer
simplifications compared to strict structures
• It is natural to work with weak structures: bicategories instead

of 2-categories, weak monoidal categories instead of strict
ones,. . .
• In concrete examples, the additional bureaucracy is often

trivial (i.e., given by identity isos)
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Introduction to univalent foundations

Key features of univalent foundations
• Identity types are interpreted as∞-groupoid structure
• Univalence axiom: identity of types is equivalence of types
• Univalence principle: identity of structures is the same as

equivalence of structures

Example (Univalence principle for groups)

(G1 = G2)≃ (G1
∼= G2) for groups G1 and G2

Example (Univalence principles for categories)

(C1 = C2)≃ (C1
∼= C2) for set-categories C1 and C2

(C1 = C2)≃ (C1 ≃ C2) for univalent categories C1 and C2



Univalence principle for set-categories

Isomorphism of categories
An isomorphism from C1 to C2 consists of functors F : C1→ C2 and
G : C2→ C1 such that F ·G= id and G · F = id (strict)

Set-categories
In a setcategory, the type of objects is a set (identity types are
subsingletons).

Theorem

(C1 = C2)≃ (C1
∼= C2) for set-categories C1 and C2

Examples: syntactic categories of type theories



Univalence principle for univalent categories

Equivalence of categories
Equivalence from C1 to C2 consists of functors F : C1→ C2 and
G : C2→ C1 such that F ·G≃ id and G · F ≃ id (weak)

Univalent categories
In a univalent category, identity of objects a= b is the same as
isomorphism a∼= b.

Theorem

(C1 = C2)≃ (C1 ≃ C2) for univalent categories C1 and C2

Examples: the categories of sets, groups, rings



Transport of structure along sameness of categories

Transporting along isomorphisms
Given setcategories C1 and C2 and an isomorphism between
them, every structure on C1 can be transported to C2.

Transporting along adjoint equivalences
Given univalent categories C1 and C2 and an adjoint equivalence
between them, every structure on C1 can be transported to C2.

E.g., have an easy proof that adjoint equivalence preserves being
Cartesian closed.



Summary: formalizing category theory in (univalent)
type theory

1. Displayed categories can provide modular constructions
2. Strict categorical structures are not as useful as in set theory;

it is more natural to work with weak categorical structures
3. Univalent foundations give us tools to reason formally modulo

equivalence of categories

Thanks to the Coq team for support and patience!

Thanks to you for listening!
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