
Turning the Coq Proof Assistant
into a Pocket Calculator

Guillaume Melquiond

Université Paris-Saclay, Inria, LMF

September 14, 2024

Introduction Rough calculator User experience Conclusion

The Need for Guaranteed Mathematical Computations

Harald Helfgott on MathOverflow, 2013 (link)

I need to evaluate some (one-variable) integrals that neither SAGE nor
Mathematica can do symbolically. As far as I can tell, I have two options:

a Use GSL (via SAGE), Maxima or Mathematica to do numerical
integration. This is really a non-option, since, if I understand
correctly, the “error bound” they give is not really a guarantee.

b Cobble together my own programs using the trapezoidal rule,
Simpson’s rule, etc., and get rigorous error bounds using bounds I
have for the second (or fourth, or what have you) derivative of the
function I am integrating. This is what I have been doing.

Is there a third option? Is there standard software that does (b) for me?

The software suggested by the accepted answer computes
an incorrect value on the example proposed by Helfgott.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 2 / 16

https://mathoverflow.net/questions/123677/rigorous-numerical-integration

Introduction Rough calculator User experience Conclusion

The Need for Guaranteed Mathematical Computations

Harald Helfgott on MathOverflow, 2013 (link)

I need to evaluate some (one-variable) integrals that neither SAGE nor
Mathematica can do symbolically. As far as I can tell, I have two options:

a Use GSL (via SAGE), Maxima or Mathematica to do numerical
integration. This is really a non-option, since, if I understand
correctly, the “error bound” they give is not really a guarantee.

b Cobble together my own programs using the trapezoidal rule,
Simpson’s rule, etc., and get rigorous error bounds using bounds I
have for the second (or fourth, or what have you) derivative of the
function I am integrating. This is what I have been doing.

Is there a third option? Is there standard software that does (b) for me?

The software suggested by the accepted answer computes
an incorrect value on the example proposed by Helfgott.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 2 / 16

https://mathoverflow.net/questions/123677/rigorous-numerical-integration

Introduction Rough calculator User experience Conclusion

Computing in Coq

One of the strengths of Coq is its ability to compute

Compute (3 + 5)%Z. (* = 8 : Z *)

But there are a few shortcomings

No immediate relation between the input and the result.

Works poorly with abstract symbols:
Compute (3 + 5)%R.
(* = R1 + (R1+R1) + (R1 + (R1+R1) * (R1+R1)): R *)

Yet, if the result is known, one can do a formal proof

Goal (3 + 5 = 8)%R. Proof. ring. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 3 / 16

Introduction Rough calculator User experience Conclusion

Computing in Coq

One of the strengths of Coq is its ability to compute

Compute (3 + 5)%Z. (* = 8 : Z *)

But there are a few shortcomings

No immediate relation between the input and the result.

Works poorly with abstract symbols:
Compute (3 + 5)%R.
(* = R1 + (R1+R1) + (R1 + (R1+R1) * (R1+R1)): R *)

Yet, if the result is known, one can do a formal proof

Goal (3 + 5 = 8)%R. Proof. ring. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 3 / 16

Introduction Rough calculator User experience Conclusion

Computing in Coq

One of the strengths of Coq is its ability to compute

Compute (3 + 5)%Z. (* = 8 : Z *)

But there are a few shortcomings

No immediate relation between the input and the result.

Works poorly with abstract symbols:
Compute (3 + 5)%R.
(* = R1 + (R1+R1) + (R1 + (R1+R1) * (R1+R1)): R *)

Yet, if the result is known, one can do a formal proof

Goal (3 + 5 = 8)%R. Proof. ring. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 3 / 16

Introduction Rough calculator User experience Conclusion

Coq as a Pocket Calculator

Objectives

Leverage the proof system of Coq.

Give some meaningful answers to the user.

Make it user-friendly.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 4 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Outline

1 Introduction

2 A rough calculator
Existential variables and tactic-in-terms
Calculator, v1
CoqInterval’s tactics

3 Improving the user experience

4 Conclusion

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 5 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Existential Variables and Tactic-in-Terms

3 + 5?

Leaving holes in the goal: existential variables

eassert (3 + 5 = ?[r]) as H.
{ (* 3 + 5 = ?r *)

ring_simplify. reflexivity. }
(* H: 3 + 5 = 8 |- ... *)

Leaving the whole goal as a hole: tactic-in-terms

Definition foo := ltac:(
refine (_ : 3 + 5 = _) ;
ring_simplify ; reflexivity).

Check foo. (* foo : 3 + 5 = 8 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 6 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Existential Variables and Tactic-in-Terms

3 + 5?

Leaving holes in the goal: existential variables

eassert (3 + 5 = ?[r]) as H.
{ (* 3 + 5 = ?r *)

ring_simplify. reflexivity. }
(* H: 3 + 5 = 8 |- ... *)

Leaving the whole goal as a hole: tactic-in-terms

Definition foo := ltac:(
refine (_ : 3 + 5 = _) ;
ring_simplify ; reflexivity).

Check foo. (* foo : 3 + 5 = 8 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 6 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

A Rough Calculator

Tying things together

Ltac expand t := refine (_: (t = _));
ring_simplify; reflexivity.

Definition foo := ltac:(expand (3 + 5)).
Check foo. (* 3 + 5 = 8 *)

Unfriendly, but actually powerful

Definition bar x := ltac:(expand ((x+1) * (x-1))).
Check bar. (* forall x, (x+1) * (x-1) = x^2 - 1 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 7 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

A Rough Calculator

Tying things together

Ltac expand t := refine (_: (t = _));
ring_simplify; reflexivity.

Definition foo := ltac:(expand (3 + 5)).
Check foo. (* 3 + 5 = 8 *)

Unfriendly, but actually powerful

Definition bar x := ltac:(expand ((x+1) * (x-1))).
Check bar. (* forall x, (x+1) * (x-1) = x^2 - 1 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 7 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Interval Arithmetic in a Nutshell

Naive interval arithmetic

If u ∈ [u; u] and v ∈ [v ; v],
then u − v ∈ [u − v ; u − v].

Rigorous polynomial approximations: f ∈ ⟨Pf ,∆f ⟩X
If u(x)− Pu(x) ∈ ∆u and v(x)− Pv (x) ∈ ∆v for all x ∈ X ,
then (u − v)(x)− (Pu − Pv)(x) ∈ ∆u −∆v for all x ∈ X .

The CoqInterval library

Goal forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->
0.835 <= x <= 0.836.

Proof. intros x H E. root E. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 8 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Interval Arithmetic in a Nutshell

Naive interval arithmetic

If u ∈ [u; u] and v ∈ [v ; v],
then u − v ∈ [u − v ; u − v].

Rigorous polynomial approximations: f ∈ ⟨Pf ,∆f ⟩X
If u(x)− Pu(x) ∈ ∆u and v(x)− Pv (x) ∈ ∆v for all x ∈ X ,
then (u − v)(x)− (Pu − Pv)(x) ∈ ∆u −∆v for all x ∈ X .

The CoqInterval library

Goal forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->
0.835 <= x <= 0.836.

Proof. intros x H E. root E. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 8 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Interval Arithmetic in a Nutshell

Naive interval arithmetic

If u ∈ [u; u] and v ∈ [v ; v],
then u − v ∈ [u − v ; u − v].

Rigorous polynomial approximations: f ∈ ⟨Pf ,∆f ⟩X
If u(x)− Pu(x) ∈ ∆u and v(x)− Pv (x) ∈ ∆v for all x ∈ X ,
then (u − v)(x)− (Pu − Pv)(x) ∈ ∆u −∆v for all x ∈ X .

The CoqInterval library

Goal forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->
0.835 <= x <= 0.836.

Proof. intros x H E. root E. Qed.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 8 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Leveraging CoqInterval’s Tactics

Interval arithmetic as a proof helper

interval_intro (PI^2/6) with (i_prec 10) as H.
(* H: 841/512 <= PI^2/6 <= 844/512 |- ... *)

Leveraging the tactics

Definition foo := ltac:(
let H := fresh in
interval_intro (PI^2/6) with (i_prec 10) as H;
exact H).

Check foo. (* 841/512 <= PI^2/6 <= 844/512 *)

Making the tactics recognize goal evars

Definition foo :=
ltac:(interval (PI^2/6) with (i_prec 10)).

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 9 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Leveraging CoqInterval’s Tactics

Interval arithmetic as a proof helper

interval_intro (PI^2/6) with (i_prec 10) as H.
(* H: 841/512 <= PI^2/6 <= 844/512 |- ... *)

Leveraging the tactics

Definition foo := ltac:(
let H := fresh in
interval_intro (PI^2/6) with (i_prec 10) as H;
exact H).

Check foo. (* 841/512 <= PI^2/6 <= 844/512 *)

Making the tactics recognize goal evars

Definition foo :=
ltac:(interval (PI^2/6) with (i_prec 10)).

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 9 / 16

Introduction Rough calculator User experience Conclusion Infrastructure Calculator CoqInterval

Leveraging CoqInterval’s Tactics

Interval arithmetic as a proof helper

interval_intro (PI^2/6) with (i_prec 10) as H.
(* H: 841/512 <= PI^2/6 <= 844/512 |- ... *)

Leveraging the tactics

Definition foo := ltac:(
let H := fresh in
interval_intro (PI^2/6) with (i_prec 10) as H;
exact H).

Check foo. (* 841/512 <= PI^2/6 <= 844/512 *)

Making the tactics recognize goal evars

Definition foo :=
ltac:(interval (PI^2/6) with (i_prec 10)).

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 9 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Outline

1 Introduction

2 A rough calculator

3 Improving the user experience
Vernacular commands to the rescue
Postprocessing

4 Conclusion

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 10 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Vernacular Commands to the Rescue

Objectives

1 Have a single short command per user query.

2 Make the proof term opaque.

3 Postprocess the type of the proof term.

4 (Improve performance.)

Def and Do

Do interval (PI^2/6).
(* (PI ^ 2 / 6) ≃ 1.64493406685 *)
Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 11 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Vernacular Commands to the Rescue

Objectives

1 Have a single short command per user query.

2 Make the proof term opaque.

3 Postprocess the type of the proof term.

4 (Improve performance.)

Def and Do

Do interval (PI^2/6).
(* (PI ^ 2 / 6) ≃ 1.64493406685 *)
Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 11 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Postprocessing the Proof Type

Why postprocess?

Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)

Check foo.
(* forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->

7525858018462367 / 9007199254740992 <= x <=
7525858018462401 / 9007199254740992 *)

What about wide intervals?
Do integral (RInt (fun x => sin (x + exp x)) 0 8)

with (i_width (-20), i_fuel 1000).
(* (RInt (fun x : R => sin (x + exp x)) 0 8)

∈ [0.347399697018; 0.347400648147] *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 12 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Postprocessing the Proof Type

Why postprocess?

Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)

Check foo.
(* forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->

7525858018462367 / 9007199254740992 <= x <=
7525858018462401 / 9007199254740992 *)

What about wide intervals?
Do integral (RInt (fun x => sin (x + exp x)) 0 8)

with (i_width (-20), i_fuel 1000).
(* (RInt (fun x : R => sin (x + exp x)) 0 8)

∈ [0.347399697018; 0.347400648147] *)

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 12 / 16

Introduction Rough calculator User experience Conclusion Vernacular Postprocessing

Types are More Than Just Text

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 13 / 16

Introduction Rough calculator User experience Conclusion

Outline

1 Introduction

2 A rough calculator

3 Improving the user experience

4 Conclusion

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 14 / 16

Introduction Rough calculator User experience Conclusion

The Issue With Performance

Computations are performed thrice

Definition slow n := (fact n) mod (S n).

Ltac reduce v :=
let w := eval vm_compute in v in
exact_no_check (eq_refl w <: v = w).

Time Do reduce (slow 12). (* 102.7s *)

Time Eval vm_compute in slow 12. (* 34.2s *)

Naming expressions triggers memoization

Definition aux := slow 12.
Time Do reduce aux. (* 31.0s *)

Work in progress: Teach Do, Def, and the tactics
how to create intermediate definitions.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 15 / 16

Introduction Rough calculator User experience Conclusion

The Issue With Performance

Computations are performed thrice

Definition slow n := (fact n) mod (S n).

Ltac reduce v :=
let w := eval vm_compute in v in
exact_no_check (eq_refl w <: v = w).

Time Do reduce (slow 12). (* 102.7s *)

Time Eval vm_compute in slow 12. (* 34.2s *)

Naming expressions triggers memoization

Definition aux := slow 12.
Time Do reduce aux. (* 31.0s *)

Work in progress: Teach Do, Def, and the tactics
how to create intermediate definitions.

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 15 / 16

Introduction Rough calculator User experience Conclusion

Conclusion

The Do & Def commands
1 Invoke a given tactic to compute some proof term.

2 Postprocess and display the type of the proof term.

“Is there standard software that does (b) for me?”

Do integral (RInt (fun x => Rabs (
(x^4 + 10*x^3 + 19*x^2 - 6*x - 6) * exp x

)) 0 1) with (i_relwidth 50).
(* (RInt (fun x => ...) 0 1) ≃ 11.1473105501 *)

Available in CoqInterval

https://coqinterval.gitlabpages.inria.fr/

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 16 / 16

https://coqinterval.gitlabpages.inria.fr/

Introduction Rough calculator User experience Conclusion

Conclusion

The Do & Def commands
1 Invoke a given tactic to compute some proof term.

2 Postprocess and display the type of the proof term.

“Is there standard software that does (b) for me?”

Do integral (RInt (fun x => Rabs (
(x^4 + 10*x^3 + 19*x^2 - 6*x - 6) * exp x

)) 0 1) with (i_relwidth 50).
(* (RInt (fun x => ...) 0 1) ≃ 11.1473105501 *)

Available in CoqInterval

https://coqinterval.gitlabpages.inria.fr/

Guillaume Melquiond Turning the Coq Proof Assistant into a Pocket Calculator 16 / 16

https://coqinterval.gitlabpages.inria.fr/

	Introduction
	A rough calculator
	Existential variables and tactic-in-terms
	Calculator, v1
	CoqInterval's tactics

	Improving the user experience
	Vernacular commands to the rescue
	Postprocessing

	Conclusion

