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The Need for Guaranteed Mathematical Computations

Harald Helfgott on MathOverflow, 2013 (link)

I need to evaluate some (one-variable) integrals that neither SAGE nor
Mathematica can do symbolically. As far as I can tell, I have two options:

a Use GSL (via SAGE), Maxima or Mathematica to do numerical
integration. This is really a non-option, since, if I understand
correctly, the “error bound” they give is not really a guarantee.

b Cobble together my own programs using the trapezoidal rule,
Simpson’s rule, etc., and get rigorous error bounds using bounds I
have for the second (or fourth, or what have you) derivative of the
function I am integrating. This is what I have been doing.

Is there a third option? Is there standard software that does (b) for me?

The software suggested by the accepted answer computes
an incorrect value on the example proposed by Helfgott.
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Computing in Coq

One of the strengths of Coq is its ability to compute

Compute (3 + 5)%Z. (* = 8 : Z *)

But there are a few shortcomings

No immediate relation between the input and the result.

Works poorly with abstract symbols:
Compute (3 + 5)%R.
(* = R1 + (R1+R1) + (R1 + (R1+R1) * (R1+R1)): R *)

Yet, if the result is known, one can do a formal proof

Goal (3 + 5 = 8)%R. Proof. ring. Qed.
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Coq as a Pocket Calculator

Objectives

Leverage the proof system of Coq.

Give some meaningful answers to the user.

Make it user-friendly.
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Outline

1 Introduction

2 A rough calculator
Existential variables and tactic-in-terms
Calculator, v1
CoqInterval’s tactics

3 Improving the user experience

4 Conclusion
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Existential Variables and Tactic-in-Terms

3 + 5?

Leaving holes in the goal: existential variables

eassert (3 + 5 = ?[r]) as H.
{ (* 3 + 5 = ?r *)

ring_simplify. reflexivity. }
(* H: 3 + 5 = 8 |- ... *)

Leaving the whole goal as a hole: tactic-in-terms

Definition foo := ltac:(
refine (_ : 3 + 5 = _) ;
ring_simplify ; reflexivity).

Check foo. (* foo : 3 + 5 = 8 *)
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A Rough Calculator

Tying things together

Ltac expand t := refine (_: (t = _));
ring_simplify; reflexivity.

Definition foo := ltac:( expand (3 + 5)).
Check foo. (* 3 + 5 = 8 *)

Unfriendly, but actually powerful

Definition bar x := ltac:( expand ((x+1) * (x-1))).
Check bar. (* forall x, (x+1) * (x-1) = x^2 - 1 *)
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Interval Arithmetic in a Nutshell

Naive interval arithmetic

If u ∈ [u; u] and v ∈ [v ; v ],
then u − v ∈ [u − v ; u − v ].

Rigorous polynomial approximations: f ∈ ⟨Pf ,∆f ⟩X
If u(x)− Pu(x) ∈ ∆u and v(x)− Pv (x) ∈ ∆v for all x ∈ X ,
then (u − v)(x)− (Pu − Pv )(x) ∈ ∆u −∆v for all x ∈ X .

The CoqInterval library

Goal forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->
0.835 <= x <= 0.836.

Proof. intros x H E. root E. Qed.
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Leveraging CoqInterval’s Tactics

Interval arithmetic as a proof helper

interval_intro (PI^2/6) with (i_prec 10) as H.
(* H: 841/512 <= PI^2/6 <= 844/512 |- ... *)

Leveraging the tactics

Definition foo := ltac:(
let H := fresh in
interval_intro (PI^2/6) with (i_prec 10) as H;
exact H).

Check foo. (* 841/512 <= PI^2/6 <= 844/512 *)

Making the tactics recognize goal evars

Definition foo :=
ltac:( interval (PI^2/6) with (i_prec 10)).
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Postprocessing
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Vernacular Commands to the Rescue

Objectives

1 Have a single short command per user query.

2 Make the proof term opaque.

3 Postprocess the type of the proof term.

4 (Improve performance.)

Def and Do

Do interval (PI^2/6).
(* (PI ^ 2 / 6) ≃ 1.64493406685 *)
Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)
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Postprocessing the Proof Type

Why postprocess?

Def foo x ‘(0 <= x <= 1) := root (sin (x + exp x)).
(* x ≃ 0.835538085216 *)

Check foo.
(* forall x, 0 <= x <= 1 -> sin (x + exp x) = 0 ->

7525858018462367 / 9007199254740992 <= x <=
7525858018462401 / 9007199254740992 *)

What about wide intervals?
Do integral (RInt (fun x => sin (x + exp x)) 0 8)

with (i_width (-20), i_fuel 1000).
(* (RInt (fun x : R => sin (x + exp x)) 0 8)

∈ [0.347399697018; 0.347400648147] *)
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Types are More Than Just Text
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The Issue With Performance

Computations are performed thrice

Definition slow n := (fact n) mod (S n).

Ltac reduce v :=
let w := eval vm_compute in v in
exact_no_check (eq_refl w <: v = w).

Time Do reduce (slow 12). (* 102.7s *)

Time Eval vm_compute in slow 12. (* 34.2s *)

Naming expressions triggers memoization

Definition aux := slow 12.
Time Do reduce aux. (* 31.0s *)

Work in progress: Teach Do, Def, and the tactics
how to create intermediate definitions.
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Conclusion

The Do & Def commands
1 Invoke a given tactic to compute some proof term.

2 Postprocess and display the type of the proof term.

“Is there standard software that does (b) for me?”

Do integral (RInt (fun x => Rabs (
(x^4 + 10*x^3 + 19*x^2 - 6*x - 6) * exp x

)) 0 1) with (i_relwidth 50).
(* (RInt (fun x => ...) 0 1) ≃ 11.1473105501 *)

Available in CoqInterval

https://coqinterval.gitlabpages.inria.fr/
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