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The TCB reduction argument for operating system design

• Monolithic OS: all hardware and a large OS kernel (with drivers, file system, network stack etc.)
• Micro-kernel OS: all hardware and a tiny OS kernel (w/o drivers, file system, network stack etc.)
• M3: tiny hardware (called TCU) and a tiny kernel.1
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• Our goal: a tiny hardware, i.e., NoC and TCU, formally-verified in Coq and a tiny kernel
1Nils Asmussen et al. “M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores”. In: ASPLOS ’16
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Programming in Kôika

Registers: Definition Types Initialization
Inductive reg_t :=

| r0
| r1
.

Definition R idx := match idx with
| r0 => bits_t 4
| r1 => bits_t 10

end.

Definition r idx : R idx := match idx with
| r0 => Bits.of_nat sz 18
| r1 => Bits.of_nat sz 18

end.

Functions/Actions Rules Rules 7→ Actions
Definition _divide :

uaction reg_t empty_ext_fn_t :=
{{ let v := read0(r0) in

let odd := v[Ob~0~0~0~0] in
if !odd then

write0(r1, v >> Ob~1)
else

write0(r1,v) }}.

Inductive rule_name_t :=
| divide
| multiply
.

Definition rules r := match r with
| divide => _divide
| multiply => _multiply
end.

Schedule
Definition collatz : scheduler := divide |> multiply |> done.

1Thomas Bourgeat et al. “The essence of Bluespec: a core language for rule-based hardware design”. In: PLDI 2020
2This example code is due to the Kôika authors.
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From Tests to Lemmas

A test with fixed
inputs and register initializations:

A lemma reasoning generalizing over
inputs and register initializations:

Example cannot_write_feature_without_kernel_bit:

let inputs := init_inputs in
let r := init_registers in (* kernel bit is [0] *)

run_function r ext_ifaces inputs handle_requests
(fun ctxt out =>

get_kernel_bit(ctxt.[FEATURES]) = Ob~0).
check.

Defined.

Lemma cannot_write_feature_without_kernel_bit:
∀ (reg:reg_t)

(inputs:input)
(r : R reg), get_kernel_bit(r FEATURES) = Ob~0 ->

run_function r ext_ifaces inputs handle_requests
(fun ctxt out =>

get_kernel_bit(ctxt.[FEATURES]) = Ob~0).
check.

Defined.
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Some First Performance Numbers

• Area and timing comparison: Original Verilog design vs Kôika design (up to implementation status)
• Running on an FPGA at 100MHz

Timing (ps) Area
WNS WHS LUT FF DSP Nets

Verilog 4112 12 3361 1566 1 7541
Kôika 5067 5 3224 1950 0 6603
WNS – worst negative slack, WHS – worst hold slack
LUT – look up table, FF – flip flop, DSP – dig. sig. proc.

• Promising: Our design is on-par with the original Verilog implementation.1

1Oguzhan Türk. “A formally verified Hardware Design of a Communication Unit in a Micro-Kernel Operating System”. MA thesis.
University of Technology, Dresden, Germany, 2022. URL: https://github.com/Barkhausen-Institut/tcu-koika/blob/main/
documentation/Report/Thesis/Turk_Oguzhan_Master_Thesis.pdf
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Lessons learned

Kôika is a great abstraction for designing HW
and junior hardware engineers can get into it (easily with a little tutorial) but

• long-time HW engineers love their Verilog
• transactional execution is problematic

Notations work well for designing an EDSL but
• error messages still look rough and
• it is easier to fix broken definitions, lemmas than Notations.

Interpretation is great for writing tests
especially for HW engineers because HW tooling is not as easy but

• is tough when Kôika type checking/evaluation gets stuck.
Performance was mostly depending on vm_compute

• Having vm_compute in the types did not work well.
• Often vm_compute resulted in long evaluation times or failed.
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Fun with vm_compute

• Actions and functions in Kôika are untyped and need to be type-checked.
• Type checking a Kôika term heavy relies on vm_compute.
• Example:

Definition min (size : nat) {reg_t : Type} : UInternalFunction reg_t empty_ext_fn_t :=
{{ fun min (a: bits_t size) (b: bits_t size) : bits_t size =>

if a < b then a else b }}.

• Fails to type check and reports a massive (3000 lines <) term.
• Diagnosis: vm_compute does not solve but unfold decidable equality, e.g., eq_dec size size.
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Fun with vm_compute

• Approaches:
1. Evolution of the tactic for type-checking to be able to solve decidable equalities.

• Some performance numbers:

size tc w/ vm_compute tc with evolved tactic
10 0.008 s 0.75 s
100 0.015 s 1.67 s
1000 0.061 s 10.2 s

• Our evolved tactic (based on cbn) is 100 – 150 times slower.
2. Direct construction of well-typed terms.

• Drop-in replacement plus minor type changes:

Definition min {reg_t} {R : reg_t -> type} (size : nat) : function R empty_Sigma :=
{{ fun min (a: bits_t size) (b: bits_t size) : bits_t size =>

if a < b then a else b }}.

• And type checking performance is on-par with vm_compute.
• PR coming soon!
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Kôika Updates / Improvements

• Coq 8.18 / OCaml 4.14
• Add necessary scope hints
• Update proofs and OCaml code

• Tool chain → dune 3
• Generate tests/examples rules w/ OCaml (retires etc/configure)
• Future: decouple cuttlec and experiment Makefile

• Stable development env. + CI
• Nix flake + Makes CI runner
• Provides software provenance
• Future: integrate with Coq nix toolbox
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Outlook and Research Directions

• Introduce tactics into Kôika for more complex proofs.
• Try MetaCoq for implementating the dynamics of a NoC.
• Introduce compiler transformations to

• reduce the transactional overheads and
• optimize Kôika programs.

• Towards composition of Kôika designs and
• Hardware modules.
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