
barkhauseninstitut.org

On the Potential of Coq as the Platform of Choice for Hardware Design

Sebastian Ertel, Max Kurze, Michael Raitza
Verified System Design Automation, Barkhausen Institute, Dresden, Germany

The TCB reduction argument for operating system design

• Monolithic OS: all hardware and a large OS kernel (with drivers, file system, network stack etc.)
• Micro-kernel OS: all hardware and a tiny OS kernel (w/o drivers, file system, network stack etc.)
• M3: tiny hardware (called TCU) and a tiny kernel.1

Tile 0
OS Kernel

Tile 1
CPU

Tile 2
GPU

Tile 3
ML X

Tile 4
Crypto X

Tile 5
Memory

TCU TCU TCU

TCU TCU TCU

r r r

r r r

• Our goal: a tiny hardware, i.e., NoC and TCU, formally-verified in Coq and a tiny kernel
1Nils Asmussen et al. “M3: A Hardware/Operating-System Co-Design to Tame Heterogeneous Manycores”. In: ASPLOS ’16

Barkhausen Institut 2

Programming in Kôika

Registers: Definition Types Initialization
Inductive reg_t :=

| r0
| r1
.

Definition R idx := match idx with
| r0 => bits_t 4
| r1 => bits_t 10

end.

Definition r idx : R idx := match idx with
| r0 => Bits.of_nat sz 18
| r1 => Bits.of_nat sz 18

end.

Functions/Actions Rules Rules 7→ Actions
Definition _divide :

uaction reg_t empty_ext_fn_t :=
{{ let v := read0(r0) in

let odd := v[Ob~0~0~0~0] in
if !odd then

write0(r1, v >> Ob~1)
else

write0(r1,v) }}.

Inductive rule_name_t :=
| divide
| multiply
.

Definition rules r := match r with
| divide => _divide
| multiply => _multiply
end.

Schedule
Definition collatz : scheduler := divide |> multiply |> done.

1Thomas Bourgeat et al. “The essence of Bluespec: a core language for rule-based hardware design”. In: PLDI 2020
2This example code is due to the Kôika authors.

Barkhausen Institut 3

From Tests to Lemmas

A test with fixed
inputs and register initializations:

A lemma reasoning generalizing over
inputs and register initializations:

Example cannot_write_feature_without_kernel_bit:

let inputs := init_inputs in
let r := init_registers in (* kernel bit is [0] *)

run_function r ext_ifaces inputs handle_requests
(fun ctxt out =>

get_kernel_bit(ctxt.[FEATURES]) = Ob~0).
check.

Defined.

Lemma cannot_write_feature_without_kernel_bit:
∀ (reg:reg_t)

(inputs:input)
(r : R reg), get_kernel_bit(r FEATURES) = Ob~0 ->

run_function r ext_ifaces inputs handle_requests
(fun ctxt out =>

get_kernel_bit(ctxt.[FEATURES]) = Ob~0).
check.

Defined.

Barkhausen Institut 4

Some First Performance Numbers

• Area and timing comparison: Original Verilog design vs Kôika design (up to implementation status)
• Running on an FPGA at 100MHz

Timing (ps) Area
WNS WHS LUT FF DSP Nets

Verilog 4112 12 3361 1566 1 7541
Kôika 5067 5 3224 1950 0 6603
WNS – worst negative slack, WHS – worst hold slack
LUT – look up table, FF – flip flop, DSP – dig. sig. proc.

• Promising: Our design is on-par with the original Verilog implementation.1

1Oguzhan Türk. “A formally verified Hardware Design of a Communication Unit in a Micro-Kernel Operating System”. MA thesis.
University of Technology, Dresden, Germany, 2022. URL: https://github.com/Barkhausen-Institut/tcu-koika/blob/main/
documentation/Report/Thesis/Turk_Oguzhan_Master_Thesis.pdf

Barkhausen Institut 5

https://github.com/Barkhausen-Institut/tcu-koika/blob/main/documentation/Report/Thesis/Turk_Oguzhan_Master_Thesis.pdf
https://github.com/Barkhausen-Institut/tcu-koika/blob/main/documentation/Report/Thesis/Turk_Oguzhan_Master_Thesis.pdf

Lessons learned

Kôika is a great abstraction for designing HW
and junior hardware engineers can get into it (easily with a little tutorial) but

• long-time HW engineers love their Verilog
• transactional execution is problematic

Notations work well for designing an EDSL but
• error messages still look rough and
• it is easier to fix broken definitions, lemmas than Notations.

Interpretation is great for writing tests
especially for HW engineers because HW tooling is not as easy but

• is tough when Kôika type checking/evaluation gets stuck.
Performance was mostly depending on vm_compute

• Having vm_compute in the types did not work well.
• Often vm_compute resulted in long evaluation times or failed.

Barkhausen Institut 6

Fun with vm_compute

• Actions and functions in Kôika are untyped and need to be type-checked.
• Type checking a Kôika term heavy relies on vm_compute.
• Example:

Definition min (size : nat) {reg_t : Type} : UInternalFunction reg_t empty_ext_fn_t :=
{{ fun min (a: bits_t size) (b: bits_t size) : bits_t size =>

if a < b then a else b }}.

• Fails to type check and reports a massive (3000 lines <) term.
• Diagnosis: vm_compute does not solve but unfold decidable equality, e.g., eq_dec size size.

Barkhausen Institut 7

Fun with vm_compute

• Approaches:
1. Evolution of the tactic for type-checking to be able to solve decidable equalities.

• Some performance numbers:

size tc w/ vm_compute tc with evolved tactic
10 0.008 s 0.75 s
100 0.015 s 1.67 s
1000 0.061 s 10.2 s

• Our evolved tactic (based on cbn) is 100 – 150 times slower.
2. Direct construction of well-typed terms.

• Drop-in replacement plus minor type changes:

Definition min {reg_t} {R : reg_t -> type} (size : nat) : function R empty_Sigma :=
{{ fun min (a: bits_t size) (b: bits_t size) : bits_t size =>

if a < b then a else b }}.

• And type checking performance is on-par with vm_compute.
• PR coming soon!

Barkhausen Institut 8

Kôika Updates / Improvements

• Coq 8.18 / OCaml 4.14
• Add necessary scope hints
• Update proofs and OCaml code

• Tool chain → dune 3
• Generate tests/examples rules w/ OCaml (retires etc/configure)
• Future: decouple cuttlec and experiment Makefile

• Stable development env. + CI
• Nix flake + Makes CI runner
• Provides software provenance
• Future: integrate with Coq nix toolbox

Barkhausen Institut 9

Outlook and Research Directions

• Introduce tactics into Kôika for more complex proofs.
• Try MetaCoq for implementating the dynamics of a NoC.
• Introduce compiler transformations to

• reduce the transactional overheads and
• optimize Kôika programs.

• Towards composition of Kôika designs and
• Hardware modules.

Barkhausen Institut 10

