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1 Summary

UniMath [VAG+] is a library of univalent mathematics written in Coq. In the past few years,
it has seen growth mostly in the area of category theory and its applications to programming
language semantics (e.g., [AMvdWW24, vdWRAN24, ANvdW23, AMM22, AHLM21, vdW23,
VvdW21, BHL20].

We propose to give an overview of the UniMath library, some of the challenges that we are
facing in developing and maintaining it, and our solutions to these challenges. We summarize
these challenges here and give more detailed information below.

One challenge we encounter is the need to build large mathematical structures. For instance,
among the objects we are studying are bicategories, which comprise 15 fields of data and 22
fields of properties. Verity double bicategories, formalized in [vdWRAN24], have 121 fields
altogether. We have developed “displayed” machinery to build such large structures modularly.

Another challenge we encounter is the need to carefully distinguish between weak and strict
mathematical structures. We discuss the difference between strict and weak (higher) categories,
and how to formalize these notions in an intensional setting.

2 Modular Constructions

In category theory, one is frequently interested in categories whose objects and morphisms are
given by, for instance, sets with additional structure. There are numerous examples of this,
for instance, the category of groups or the category of rings. General examples are given by
algebras for a functor on sets and by algebras for a monad.

There are some challenges when using such categories in a formalization. For instance,
frequently one is interested in lifting functors F to the category of algebras (see, for instance,
[HJ98, Theorem 2.14 and Corollary 2.15] and [vdWG19, Proposition 6.2]. In a formalization,
the lifted functor should be defined in a modular way: we want to construct structure and
properties of F from which one can obtain the lift directly.

Displayed categories [AL19] give a way to construct categories, functors, and natural trans-
formations in a modular way. Basically, a displayed category over a category describes properties
and structures to be added to the objects and morphisms of that category. We can represent
the category of groups as a displayed category over the category of sets: the objects over a
set is the collection of group structures, whereas the morphisms over a function between two
group structures are given by proofs that this function is a homomorphism. Note that we can
similarly define notions of displayed functors and displayed natural transformations.

The usage of displayed categories makes the notion of a “structure” explicit. Intuitively,
the following is happening: there are two ways to define groups. We could define groups by
describing them via a single record type containing the fields for the carrier, operations, and
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laws. However, we could also describe a record that is parameterized by a type, and that record
represents a group over that type of elements.

Displayed categories are used extensively in UniMath. They are used to modularly construct
categories and in the study of fibrations and the semantics of type theory. In addition, they
are generalized to displayed bicategories as well, and they play a prominent role to construct
bicategories in a modular fashion.

3 Weakness versus Strictness

In (higher) category theory, we distinguish between, on the one hand, strict structures, where
sameness within a structure is expressed using equality, and, on the other hand, weak structures,
where sameness is expressed using a notion of equivalence provided by the structure itself.
Traditionally, strict structures have been considered to be easier to work with. The reason
is that equality traditionally is substitutive; equals can be substituted for each other in any
context. This means that we can always replace f ◦ (g ◦ h) by (f ◦ g) ◦ h or vice versa. In such
a setting, coherence theorems are very useful, because it allows us to replace weak structures
by strict structures.

The situation is different in intensional foundations. Instead of being substitutive, the
Martin-Löf identity type is transportational : replacing something by something identical leaves
a trace in form of a transport. This greatly reduces the usefulness of strict structures. More
concretely, since we cannot replace f ◦ (g ◦ h) by (f ◦ g) ◦ h without leaving a trace in the
resulting term, it is not possible to use strictness to simplify any coherence diagram.

Let us make this concrete for adjunctions. If we have an adjunction F ⊣ U then the unit η
and counit ε satisfy the triangle equations, and one of them says εL ◦ Lη = id. In extensional
foundations, this equation is well-typed, because L = L◦ id and because L◦(R◦L) = (L◦R)◦L.
However, this equation is not well-typed in intensional foundations, because in that setting, one
has to decorate the term with suitable unitors and associators. As a consequence, bicategories
got more consideration than 2-categories in UniMath in contrast to classical foundations where
it is the other way around.

4 Transport along Equivalences

UniMath uses univalent foundations [Uni13], and univalent categories play a prominent role in
it [AKS15]. In univalent categories, isomorphism of objects is the same as identity of objects. In
addition, equivalences of univalent categories are the same as identities of univalent categories.
As such, statements about isomorphisms and equivalences can be proven by induction.

A concrete application of univalence is given by transporting structure and properties of
categories. For instance, suppose we have categories C and D, an equivalence e from C to
D, and suppose that D is locally Cartesian closed. Proving that C is locally Cartesian closed
usually requires a technical and tedious proof. However, if both C and D are univalent, then
the proof becomes trivial. because by induction, we can assume that e is the identity.
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