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1 Computing in Coq

Being built on top of the calculus of inductive constructions, the Coq proof assistant allows one
to write actual programs, to state their specification, to formally prove that programs match
their specification, and to execute them in a relatively efficient way. Therefore, it seems like
one could use Coq, not only to verify mathematical proofs, but also as a formally verified
replacement for computer algebra systems.

As a preliminary step, let us see if Coq can at least be used as a pocket calculator, which
requires the ability to query the system and get meaningful answers. Consider the following
very simple example. Since the addition over the type Z of integers has some computational
content, we can easily ask Coq what the result of 3 + 5 is.

Compute (3 + 5)%Z. (* = 8 : Z *)

Unfortunately, this approach becomes pointless as soon as the expression contains abstract
symbols. For example, if we try again with the type R of real numbers, the result is just noise.
Indeed, Coq has unfolded the IZR injection from Z to R, but it has not performed any actual
addition or multiplication, as they are opaque.

Compute (3 + 5)%R. (* = R1 + (R1 + R1) + (R1 + (R1 + R1) * (R1 + R1)) : R *)

An important point to note is that, to prove the equality 3+5 = 8 over R, one could just have
used the ring tactic, which first reifies the goal and then performs a proof by computational
reflection [1]. The downside of this proof-based approach is that the user needs to know the
result beforehand, which is hardly fitting for a pocket calculator.

Goal (3 + 5 = 8)%R. Proof. ring. Qed.

2 A rough pocket calculator

The addition of the tactic-in-term feature has been a game changer, since tactics are no longer
restricted to plain proof scripts. They can now appear directly inside Gallina terms, through
the use of the ltac:(...) quotation mechanism [2]. More importantly, the type of the goal does
not have to be set a priori. Instead, Coq will instantiate it appropriately, depending on the
type of the proof term. Consider the following Ltac definition:

Ltac expand t := refine (_: (t = _)); ring_simplify; reflexivity.

It first instructs Coq that the goal is an equality between some term t (e.g., 3+5) and some
yet to be determined term. It then applies the ring simplify variant of ring, which reifies t,
puts it into an algebraically normal form, and interprets it back. Finally, it provides a trivial
proof by reflexivity, which forces the initially undetermined term to be instantiated with the
normal form of t. We can now use this expand tactic to perform the original computation:

*This project has received funding from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement No. 101001995).



Turning the Coq Proof Assistant into a Pocket Calculator Guillaume Melquiond

Definition foo := ltac:(expand (3 + 5)%R).
About foo. (* foo : 3 + 5 = 8 *)

Interestingly enough, we can even use this approach to perform symbolic computations:

Definition foo (x:Z) := ltac:(expand ((x + 1) * (x - 1))%Z).
About foo. (* foo : forall x : Z, (x + 1) * (x - 1) = x ˆ 2 - 1 *)

But using Coq this way is hardly user-friendly. Indeed, the invocation is quite verbose, as
it involves Definition, About, and ltac. Moreover, the output is a bit too noisy, since About
displays a long list of metadata about the proof term. We cannot even use the Check command
to perform all these steps at once, as the output would be flooded by the generated proof term.

3 Vernacular to the rescue

To alleviate these issues, one can define custom vernacular commands. The tentatively named
Def command, which is in the process of being added to the CoqInterval library,1 plays the
same role as the verbose approach above. Its syntax is similar to Definition, except that the
right-hand side is interpreted as an Ltac expression rather than a Gallina term. Moreover, the
resulting proof term is automatically opaque. When the user is not interested in giving a lasting
name to the generated proof term, the Do command can be used in place of Def.

Do (expand (3 + 5)%R). (* 3 + 5 = 8 *)

More importantly, these commands can perform some postprocessing on the type of the
proof term, so as to display only the meaningful parts to the user. This has been used to make
the tactics from CoqInterval more user-friendly, as they are designed to compute an enclosure
of a real-valued expression [3], whose type can be rather unwieldy:

Goal True. Proof. interval_intro (PI2/6) as H.
Check H. (* 7408124450506704 / 4503599627370496 <= PI2 / 6 <= 7408124450506710 / 4503599627370496 *)

Both commands Def and Do detect such types and print them in a slightly more readable way.2

The following examples illustrate how enclosures are displayed, depending on their tightness:

Do interval (PI2/6). (* (PI2 / 6) ≃ 1.64493406685 *)
Def f x ‘(0 <= x <= 2) := root (exp x = 2). (* x ≃ 0.69314718056 *)
Do integral (RInt (fun x => 4 * sqrt (1 - x2)) 0 1).
(* (RInt (fun x : R => 4 * sqrt (1 - x2)) 0 1) ∈ [3.14126698529; 3.14175550422] *)

The output does not even have to be textual. For instance, if the type of the proof term
looks like some plotting data, the commands behave as if the user had invoked CoqInterval’s
Plot command [4], which means that the following command will open a graphical window
showing the plot of sin(x+ expx) for x ∈ [0; 8].

Do plot (fun x => sin (x + exp x)) 0 8.

Having such a query-reply interaction with the coqtop REPL associated with a richer output
is reminiscent of ipython [5], although its features are nowhere close yet. But at the very least,
all the computations are formally verified by Coq’s kernel, since actual proof terms are produced
by every command.

1https://coqinterval.gitlabpages.inria.fr/
2The actual type can still be accessed using commands such as About or Check, if needed.
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[1] Benjamin Grégoire and Assia Mahboubi. Proving equalities in a commutative ring done right in
Coq. In Joe Hurd and Tom Melham, editors, 18th International Conference on Theorem Proving
in Higher Order Logics, pages 98–113, Oxford, UK, August 2005. doi:10.1007/11541868 7.

[2] Jason Gross. Presentation of three neat tricks in Coq 8.5. In Dererk Dreyer and Viktor Vafeiadis,
editors, 6th Coq Workshop, Vienna, Austria, July 2014. URL: https://jasongross.github.io/
presentations/coq-workshop-2014/coq-workshop-proposal-tactics-in-terms.pdf.
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