
A Development Process for Coq Projects
Permitting Invalid Proofs

Hendrik Tews, Kernkonzept GmbH, Germany

July 31, 2024

This note describes a development process
for Coq projects that permits invalid proofs
in the main development line while still keep-
ing control over the project. The note re-
views the existing tool support and presents
new Proof-General features that enable such
a process. The described process has recently
been introduced at Kernkonzept.

1 Advantages and Challenges when
for permitting invalid proofs

For good reasons, IDEs for Coq and the Coq
tool chain itself focus on correctness. During
development in a Coq project, one is there-
fore forced to work on the first invalid proof
or definition. However, abandoning the cor-
rectness requirement and permitting incom-
plete or invalid proofs in the main develop-
ment line for certain periods in the life cycle
of a project has the following advantages.

• The developer can focus on the most in-
teresting or challenging proof.

• A team can work in parallel on different
proofs.

• Pull requests can be merged into the
main line before all proofs have been
fixed, making collaboration and review
much easier.

• Depending on deadlines and available
resources, one can focus on features, ne-

glecting proofs until there is time again
to update all proofs. This is espe-
cially important in a commercial con-
text, where certain customers may only
require features, unfortunately without
caring about proofs.

Invalid proofs in the main development
line are a kind of technical dept. To con-
trol this dept and to keep the project alive
the following requirements seem sensible.

1. Continuous integration should ensure
that the main development line is al-
ways in a state where new features can
be added to the project and were one
can work on any of the invalid proofs.

2. The proofs that become invalid in a pull
request should be highlighted, such that
the reviewer can judge the impact of the
changes.

3. There should be a summary about the
proof state of the project, generated
by continuous integration, that contains
the list of currently invalid proofs.

2 Available and needed tool support

Although not developed for this purpose,
there seems to be enough tool support for
requirement 1. Vos compilation (compiled
interfaces), asynchronous processing in

1



CoqIDE and VsCoq, and the omit proofs
feature of Proof General can be used to work
on a project that contains invalid proofs.
This seems sufficient for requirement 1,
although the described tool support is
limited to invalid opaque proofs only.

There is currently no support in the Coq
command-line tools for requirement 3, be-
cause the compile check using -vok exits
on the first invalid proof, see also feature
wish #11479. To cope with requirement 3,
a new feature for generating proof-status
statistics (command proof-check-report)
was recently implemented in Proof General.
While this works, it is far from optimal be-
cause one needs to start Proof General in
batch mode, which then processes the file in
its usual command loop with the known effi-
ciency restrictions.

Requirement 2 seems essential to avoid the
situation that a lot of proofs become invalid
without anybody taking notice. However, it
is not clear how to realize this requirement
when using a version-control system such as
Git, where review typically focuses on source
code only. One possible solution is to build
lists of newly failing and newly passing proofs
in continuous integration, based on Proof
General’s feature for proof-status statistics
presented above. However, at Kernkonzept
we were interested in a process where failing
proofs are annotated with FAIL comments
such that they stand out during code re-
view and where continuous integration can
check the correctness of these annotations.
We therefore recently implemented the com-
mand proof-check-annotate in Proof Gen-
eral, which inserts FAIL comments at failing
proofs and deletes such comments on pass-
ing proofs. This annotation feature suffers
from the same problems as the proof-status
statistics feature.

3 Current realization at Kernkonzept

At Kernkonzept we permit invalid proofs in
the main development line. Before submit-
ting a pull request, developers must anno-
tate each failing proof with a FAIL com-
ment and delete such comments on success-
ful proofs, using a make target on the ba-
sis of Proof General’s proof-status annota-
tion feature. This way new failing proofs
stand out during code review. We imple-
mented a mandatory test for each pull re-
quest that checks that vos-compilation is suc-
cessful and that updating all FAIL comments
does not change anything (in the sense of
git diff). Pull requests for which stan-
dard batch compilation (producing vo files)
is successful receive a bonus point. There is
a make target producing a proof-state sum-
mary for the project. A corresponding dash-
board in our continuous integration environ-
ment is planned.

4 Conclusion

A development process that permits invalid
proofs in the main development line in a Coq
project simplifies team collaboration and de-
velopment. Vos compilation and the possibil-
ity to ignore failing opaque proofs in current
Coq IDEs are essential for such a process.
Until recently, appropriate tool support to
control the technical depth accumulated by
failing proofs was missing. This note intro-
duces recent Proof-General extensions that
close this gap. A coqc feature that produces
a pass/fail list for all opaque proofs more ef-
ficiently than Proof General would complete
the tool support for permitting invalid proofs
and could replace Proof General batch-mode
runs in the future.

Acknowledgments The work presented in
this note was partially supported by the Ger-
man government through the Versecloud re-
search project.

2

https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/versecloud

	Advantages and Challenges when for permitting invalid proofs
	Available and needed tool support
	Current realization at Kernkonzept
	Conclusion

