
An Encoding of (Co)inductive Types in Coq
via W- and M-types in the category of setoids

Galaad Langlois1, Damien Pous2, Yannick Zakowski3

1ENS de Lyon

2CNRS

3Inria

The Coq Workshop 2023, July 31

Galaad Langlois An Encoding of (Co)inductive Types in Coq 1 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X)

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment

Galaad Langlois An Encoding of (Co)inductive Types in Coq 2 / 31

Table of Contents

1 Some limits of (co)inductive types in Coq

2 (Co)inductive types, categorically

3 Polynomial functors

4 Coq implementation: use of setoids

Galaad Langlois An Encoding of (Co)inductive Types in Coq 3 / 31

Equality for coinductive types

CoInductive stream := cons { hd : nat; tl : stream }.

CoFixpoint zeros := cons 0 zeros.

CoFixpoint zeros’ := cons 0 (cons 0 zeros’).

▶ impossible to prove zeros = zeros’

▶ need to define a bisimilarity relation by hand

CoInductive EqSt (s1 s2 : stream) : Prop := eqst {

eqst_hd : hd s1 = hd s2;

eqst_tl : EqSt (tl s1) (tl s2);

}.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 4 / 31

Equality for coinductive types

CoInductive stream := cons { hd : nat; tl : stream }.

CoFixpoint zeros := cons 0 zeros.

CoFixpoint zeros’ := cons 0 (cons 0 zeros’).

▶ impossible to prove zeros = zeros’

▶ need to define a bisimilarity relation by hand

CoInductive EqSt (s1 s2 : stream) : Prop := eqst {

eqst_hd : hd s1 = hd s2;

eqst_tl : EqSt (tl s1) (tl s2);

}.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 4 / 31

Compositionnality

Inductive tree (A : Type) : Type :=

| node (label : A) (children : list (tree A)).

▶ the automatically generated induction principle is useless

▶ impossible to abstract over list

Context (F : Type -> Type)

Context (Fmap : ∀ (X Y : Type), (X -> Y) -> F X -> F Y).

Fail Inductive tree (A : Type) : Type :=

| node (label : A) (children : F (tree A)).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 5 / 31

Compositionnality

Inductive tree (A : Type) : Type :=

| node (label : A) (children : list (tree A)).

▶ the automatically generated induction principle is useless

▶ impossible to abstract over list

Context (F : Type -> Type)

Context (Fmap : ∀ (X Y : Type), (X -> Y) -> F X -> F Y).

Fail Inductive tree (A : Type) : Type :=

| node (label : A) (children : F (tree A)).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 5 / 31

Compositionnality

Inductive tree (A : Type) : Type :=

| node (label : A) (children : list (tree A)).

▶ the automatically generated induction principle is useless

▶ impossible to abstract over list

Context (F : Type -> Type)

Context (Fmap : ∀ (X Y : Type), (X -> Y) -> F X -> F Y).

Fail Inductive tree (A : Type) : Type :=

| node (label : A) (children : F (tree A)).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 5 / 31

The guard condition

▶ fixpoints and cofixpoints are accepted by Coq only if they
respect a syntactic guard condition

▶ this condition prevents from defining some corecursive
functions that are perfectly justified mathematically

▶ example: shuffle product on streams

Fail CoFixpoint shuffle (s s’ : stream) : stream :=

shuffle (tl s) s’ + shuffle s (tl s’).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 6 / 31

The guard condition

▶ fixpoints and cofixpoints are accepted by Coq only if they
respect a syntactic guard condition

▶ this condition prevents from defining some corecursive
functions that are perfectly justified mathematically

▶ example: shuffle product on streams

Fail CoFixpoint shuffle (s s’ : stream) : stream :=

shuffle (tl s) s’ + shuffle s (tl s’).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 6 / 31

The guard condition

▶ fixpoints and cofixpoints are accepted by Coq only if they
respect a syntactic guard condition

▶ this condition prevents from defining some corecursive
functions that are perfectly justified mathematically

▶ example: shuffle product on streams

Fail CoFixpoint shuffle (s s’ : stream) : stream :=

shuffle (tl s) s’ + shuffle s (tl s’).

Galaad Langlois An Encoding of (Co)inductive Types in Coq 6 / 31

Inspiration from other proof assistants

▶ Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using
bounded natural functors (BNF)

▶ Lean: quotients of polynomial functors [Avigad et al., 2019]

▶ these frameworks require quotient types, propositional and
functional extensionality

▶ goal: a similar framework, in Coq, axiom-free

Galaad Langlois An Encoding of (Co)inductive Types in Coq 7 / 31

Inspiration from other proof assistants

▶ Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using
bounded natural functors (BNF)

▶ Lean: quotients of polynomial functors [Avigad et al., 2019]

▶ these frameworks require quotient types, propositional and
functional extensionality

▶ goal: a similar framework, in Coq, axiom-free

Galaad Langlois An Encoding of (Co)inductive Types in Coq 7 / 31

Inspiration from other proof assistants

▶ Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using
bounded natural functors (BNF)

▶ Lean: quotients of polynomial functors [Avigad et al., 2019]

▶ these frameworks require quotient types, propositional and
functional extensionality

▶ goal: a similar framework, in Coq, axiom-free

Galaad Langlois An Encoding of (Co)inductive Types in Coq 7 / 31

Inspiration from other proof assistants

▶ Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using
bounded natural functors (BNF)

▶ Lean: quotients of polynomial functors [Avigad et al., 2019]

▶ these frameworks require quotient types, propositional and
functional extensionality

▶ goal: a similar framework, in Coq, axiom-free

Galaad Langlois An Encoding of (Co)inductive Types in Coq 7 / 31

Table of Contents

1 Some limits of (co)inductive types in Coq

2 (Co)inductive types, categorically

3 Polynomial functors

4 Coq implementation: use of setoids

Galaad Langlois An Encoding of (Co)inductive Types in Coq 8 / 31

Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31

Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31

Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31

Constructors as algebras

An inductive type is the “least type” closed under some
constructors (e.g., 0 and succ for the type nat).

Definition (F -algebra)

An F-algebra is a pair (X , a) where X is a type and a : F (X) → X .

F (X) = 1+ X 1+ nat nat
[0,succ]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 10 / 31

Constructors as algebras

An inductive type is the “least type” closed under some
constructors (e.g., 0 and succ for the type nat).

Definition (F -algebra)

An F-algebra is a pair (X , a) where X is a type and a : F (X) → X .

F (X) = 1+ X 1+ nat nat
[0,succ]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 10 / 31

Constructors as algebras

An inductive type is the “least type” closed under some
constructors (e.g., 0 and succ for the type nat).

Definition (F -algebra)

An F-algebra is a pair (X , a) where X is a type and a : F (X) → X .

F (X) = 1+ X 1+ nat nat
[0,succ]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 10 / 31

Initial algebras

Definition (Initial F -algebra)

An initial F -algebra is an algebra a : F (X) → X such that for all
algebra b : F (Y) → Y , there exists a unique function f : X → Y
such that the following diagram commutes:

F (X) F (Y)

X Y

Fmap(f)

a b

f

Galaad Langlois An Encoding of (Co)inductive Types in Coq 11 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 12 / 31

Destructors as coalgebras

A coinductive type is the “greatest type” closed under some
destructors (e.g., hd and tl for the type stream).

Definition (F -coalgebra)

An F-coalgebra is a pair (X , c) where X is a type and
c : X → F (X).

F (X) = A× X streamA A× streamA
(hd,tl)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 13 / 31

Destructors as coalgebras

A coinductive type is the “greatest type” closed under some
destructors (e.g., hd and tl for the type stream).

Definition (F -coalgebra)

An F-coalgebra is a pair (X , c) where X is a type and
c : X → F (X).

F (X) = A× X streamA A× streamA
(hd,tl)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 13 / 31

Destructors as coalgebras

A coinductive type is the “greatest type” closed under some
destructors (e.g., hd and tl for the type stream).

Definition (F -coalgebra)

An F-coalgebra is a pair (X , c) where X is a type and
c : X → F (X).

F (X) = A× X streamA A× streamA
(hd,tl)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 13 / 31

Final coalgebras

Definition (Final F -coalgebra)

A final F -coalgebra is a coalgebra c : Z → F (Z) such that for all
coalgebra d : X → F (X), there exists a unique function f : X → Z
such that the following diagram commutes:

X Z

F (X) F (Z)

f

d c

F (f)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 14 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))

Galaad Langlois An Encoding of (Co)inductive Types in Coq 15 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X) finitely branching trees

Galaad Langlois An Encoding of (Co)inductive Types in Coq 16 / 31

Table of Contents

1 Some limits of (co)inductive types in Coq

2 (Co)inductive types, categorically

3 Polynomial functors

4 Coq implementation: use of setoids

Galaad Langlois An Encoding of (Co)inductive Types in Coq 17 / 31

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

▶ in Coq: strict positivity condition

▶ in category theory: polynomial functors

P,Q ::= id | cstS | P + Q | P × Q | PS

Galaad Langlois An Encoding of (Co)inductive Types in Coq 18 / 31

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

▶ in Coq: strict positivity condition

▶ in category theory: polynomial functors

P,Q ::= id | cstS | P + Q | P × Q | PS

Galaad Langlois An Encoding of (Co)inductive Types in Coq 18 / 31

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

▶ in Coq: strict positivity condition

▶ in category theory: polynomial functors

P,Q ::= id | cstS | P + Q | P × Q | PS

Galaad Langlois An Encoding of (Co)inductive Types in Coq 18 / 31

Definitions

Definition (Container)

A container is a pair noted (A ▷ B) where A : Type and
B : A → Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

P(X) =
∑
a:A

XB(a)

a

x1 x2 xn

b1
b2 bn

.

a : A

f : B(a) → X

Galaad Langlois An Encoding of (Co)inductive Types in Coq 19 / 31

Definitions

Definition (Container)

A container is a pair noted (A ▷ B) where A : Type and
B : A → Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

P(X) =
∑
a:A

XB(a)

a

x1 x2 xn

b1
b2 bn

.

a : A

f : B(a) → X

Galaad Langlois An Encoding of (Co)inductive Types in Coq 19 / 31

Definitions

Definition (Container)

A container is a pair noted (A ▷ B) where A : Type and
B : A → Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

P(X) =
∑
a:A

XB(a)

a

x1 x2 xn

b1
b2 bn

.

a : A

f : B(a) → X

Galaad Langlois An Encoding of (Co)inductive Types in Coq 19 / 31

Examples

A : Type
B : A → Type

P(X) =
∑
a:A

XB(a)

P(X) = X × X (1 ▷ ⋆ 7→ 2)

P(X) = option(X) ≃ 1+ X

(
2 ▷

true 7→ 0

false 7→ 1

)
P(X) = list(X) ≃

∑
n:nat X

n (nat ▷ n 7→ n)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 20 / 31

Examples

A : Type
B : A → Type

P(X) =
∑
a:A

XB(a)

P(X) = X × X (1 ▷ ⋆ 7→ 2)

P(X) = option(X) ≃ 1+ X

(
2 ▷

true 7→ 0

false 7→ 1

)
P(X) = list(X) ≃

∑
n:nat X

n (nat ▷ n 7→ n)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 20 / 31

Examples

A : Type
B : A → Type

P(X) =
∑
a:A

XB(a)

P(X) = X × X (1 ▷ ⋆ 7→ 2)

P(X) = option(X) ≃ 1+ X

(
2 ▷

true 7→ 0

false 7→ 1

)

P(X) = list(X) ≃
∑

n:nat X
n (nat ▷ n 7→ n)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 20 / 31

Examples

A : Type
B : A → Type

P(X) =
∑
a:A

XB(a)

P(X) = X × X (1 ▷ ⋆ 7→ 2)

P(X) = option(X) ≃ 1+ X

(
2 ▷

true 7→ 0

false 7→ 1

)
P(X) = list(X) ≃

∑
n:nat X

n (nat ▷ n 7→ n)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 20 / 31

Closure properties

Polynomial functors are closed under:

▶ sum

▶ product

▶ composition

▶ (µ and ν in the multivariate case)

which means providing the corresponding constructions on
containers and establishing the associated functor equivalences

Galaad Langlois An Encoding of (Co)inductive Types in Coq 21 / 31

W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

.

▶ well-founded trees: W = µX . P(X)

▶ non-well-founded trees: M = νX . P(X)

“one (co)inductive to rule them all”

Galaad Langlois An Encoding of (Co)inductive Types in Coq 22 / 31

W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

.

▶ well-founded trees: W = µX . P(X)

▶ non-well-founded trees: M = νX . P(X)

“one (co)inductive to rule them all”

Galaad Langlois An Encoding of (Co)inductive Types in Coq 22 / 31

W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

.

▶ well-founded trees: W = µX . P(X)

▶ non-well-founded trees: M = νX . P(X)

“one (co)inductive to rule them all”

Galaad Langlois An Encoding of (Co)inductive Types in Coq 22 / 31

W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

.

▶ well-founded trees: W = µX . P(X)

▶ non-well-founded trees: M = νX . P(X)

“one (co)inductive to rule them all”

Galaad Langlois An Encoding of (Co)inductive Types in Coq 22 / 31

W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

.

▶ well-founded trees: W = µX . P(X)

▶ non-well-founded trees: M = νX . P(X)

“one (co)inductive to rule them all”

Galaad Langlois An Encoding of (Co)inductive Types in Coq 22 / 31

Table of Contents

1 Some limits of (co)inductive types in Coq

2 (Co)inductive types, categorically

3 Polynomial functors

4 Coq implementation: use of setoids

Galaad Langlois An Encoding of (Co)inductive Types in Coq 23 / 31

Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 24 / 31

Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 24 / 31

Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 24 / 31

Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 24 / 31

Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]

Galaad Langlois An Encoding of (Co)inductive Types in Coq 24 / 31

Solution : shift of category

Types 99K Setoids

Definition (Setoid)

A setoid is a pair (X ,≡X) where X is a type and ≡X is an
equivalence relation on X .

Functions 99K Extensional functions

Definition (Extensional function)

An extensional function between two setoids (X ,≡X) and (Y ,≡Y)
is a function f : X → Y such that if x ≡X x ′ then f (x) ≡Y f (x ′).

0 1 2 + ×
√

A → Type
∑ ∏

?

Galaad Langlois An Encoding of (Co)inductive Types in Coq 25 / 31

Solution : shift of category

Types 99K Setoids

Definition (Setoid)

A setoid is a pair (X ,≡X) where X is a type and ≡X is an
equivalence relation on X .

Functions 99K Extensional functions

Definition (Extensional function)

An extensional function between two setoids (X ,≡X) and (Y ,≡Y)
is a function f : X → Y such that if x ≡X x ′ then f (x) ≡Y f (x ′).

0 1 2 + ×
√

A → Type
∑ ∏

?

Galaad Langlois An Encoding of (Co)inductive Types in Coq 25 / 31

Solution : shift of category

Types 99K Setoids

Definition (Setoid)

A setoid is a pair (X ,≡X) where X is a type and ≡X is an
equivalence relation on X .

Functions 99K Extensional functions

Definition (Extensional function)

An extensional function between two setoids (X ,≡X) and (Y ,≡Y)
is a function f : X → Y such that if x ≡X x ′ then f (x) ≡Y f (x ′).

0 1 2 + ×
√

A → Type
∑ ∏

?

Galaad Langlois An Encoding of (Co)inductive Types in Coq 25 / 31

Solution : shift of category

Types 99K Setoids

Definition (Setoid)

A setoid is a pair (X ,≡X) where X is a type and ≡X is an
equivalence relation on X .

Functions 99K Extensional functions

Definition (Extensional function)

An extensional function between two setoids (X ,≡X) and (Y ,≡Y)
is a function f : X → Y such that if x ≡X x ′ then f (x) ≡Y f (x ′).

0 1 2 + ×
√

A → Type
∑ ∏

?

Galaad Langlois An Encoding of (Co)inductive Types in Coq 25 / 31

Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗

Galaad Langlois An Encoding of (Co)inductive Types in Coq 26 / 31

Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗

Galaad Langlois An Encoding of (Co)inductive Types in Coq 26 / 31

Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗

Galaad Langlois An Encoding of (Co)inductive Types in Coq 26 / 31

Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗

Galaad Langlois An Encoding of (Co)inductive Types in Coq 26 / 31

Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗

Galaad Langlois An Encoding of (Co)inductive Types in Coq 26 / 31

Polynomial functors of setoids

Structure container := {

A : Setoid;

B : setoid_family A }.

Structure PFUNCTOR := {

pf_func :> FUNCTOR SETOIDS SETOIDS;

pf_cont : container;

pfE : pf_func ≃ extension pf_cont }.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 27 / 31

Polynomial functors of setoids

Structure container := {

A : Setoid;

B : setoid_family A }.

Structure PFUNCTOR := {

pf_func :> FUNCTOR SETOIDS SETOIDS;

pf_cont : container;

pfE : pf_func ≃ extension pf_cont }.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 27 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)

Galaad Langlois An Encoding of (Co)inductive Types in Coq 28 / 31

In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition P := nat * X.

2. Define the desired (co)inductive setoid as the W-setoid
associated to the functor.

Definition stream_coalg := nu coalg P.

Definition stream := coalg car stream_coalg.

Definition final_stream_coalg : final stream_coalg :=

final nu P.

2’. Use your own type, enriched with an equivalence relation, a
(co)algebra structure and a proof that it is an initial/final
(co)algebra of the functor.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 29 / 31

In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition P := nat * X.

2. Define the desired (co)inductive setoid as the W-setoid
associated to the functor.

Definition stream_coalg := nu coalg P.

Definition stream := coalg car stream_coalg.

Definition final_stream_coalg : final stream_coalg :=

final nu P.

2’. Use your own type, enriched with an equivalence relation, a
(co)algebra structure and a proof that it is an initial/final
(co)algebra of the functor.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 29 / 31

In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition P := nat * X.

2. Define the desired (co)inductive setoid as the W-setoid
associated to the functor.

Definition stream_coalg := nu coalg P.

Definition stream := coalg car stream_coalg.

Definition final_stream_coalg : final stream_coalg :=

final nu P.

2’. Use your own type, enriched with an equivalence relation, a
(co)algebra structure and a proof that it is an initial/final
(co)algebra of the functor.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 29 / 31

In practice (2)

3. The (Co)Lambek lemma provides a constructor and a
destructor.

Definition iso_fix : stream ≃ nat * stream :=

CoLambek final_stream_coalg.

4. The initiality/finality property provides a (co)recursor to define
(co)recursive functions.

Definition stream_corec (X : Setoid) (c : X .−→ nat * X)

: X .−→ stream :=

corec final_stream_coalg c.

Definition add : stream * stream .−→ stream :=

stream_corec (stream * stream)

(fun s s’ => (hd s + hd s’, (tl s, tl s’))).

5. A (co)induction principle is provided for proofs.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 30 / 31

In practice (2)

3. The (Co)Lambek lemma provides a constructor and a
destructor.

Definition iso_fix : stream ≃ nat * stream :=

CoLambek final_stream_coalg.

4. The initiality/finality property provides a (co)recursor to define
(co)recursive functions.

Definition stream_corec (X : Setoid) (c : X .−→ nat * X)

: X .−→ stream :=

corec final_stream_coalg c.

Definition add : stream * stream .−→ stream :=

stream_corec (stream * stream)

(fun s s’ => (hd s + hd s’, (tl s, tl s’))).

5. A (co)induction principle is provided for proofs.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 30 / 31

In practice (2)

3. The (Co)Lambek lemma provides a constructor and a
destructor.

Definition iso_fix : stream ≃ nat * stream :=

CoLambek final_stream_coalg.

4. The initiality/finality property provides a (co)recursor to define
(co)recursive functions.

Definition stream_corec (X : Setoid) (c : X .−→ nat * X)

: X .−→ stream :=

corec final_stream_coalg c.

Definition add : stream * stream .−→ stream :=

stream_corec (stream * stream)

(fun s s’ => (hd s + hd s’, (tl s, tl s’))).

5. A (co)induction principle is provided for proofs.

Galaad Langlois An Encoding of (Co)inductive Types in Coq 30 / 31

Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques

Galaad Langlois An Encoding of (Co)inductive Types in Coq 31 / 31

Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques

Galaad Langlois An Encoding of (Co)inductive Types in Coq 31 / 31

Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques

Galaad Langlois An Encoding of (Co)inductive Types in Coq 31 / 31

Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques

Galaad Langlois An Encoding of (Co)inductive Types in Coq 31 / 31

Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques

Galaad Langlois An Encoding of (Co)inductive Types in Coq 31 / 31

	Some limits of (co)inductive types in Coq
	(Co)inductive types, categorically
	Polynomial functors
	Coq implementation: use of setoids

