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Introduction

Goal: a library to easily define and work with datatypes such as

1. µX . 1+ A× X 2

2. νX . A× X 2

3. µX . A×F(X )

4. νX . µY . X + Y

Ingredients:

▶ category theory can give constructors, pattern-matching,
recursion principles, induction principles

▶ W-types and M-types: a generic family of (co)inductive types

▶ setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment
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Equality for coinductive types

CoInductive stream := cons { hd : nat; tl : stream }.

CoFixpoint zeros := cons 0 zeros.

CoFixpoint zeros’ := cons 0 (cons 0 zeros’).

▶ impossible to prove zeros = zeros’

▶ need to define a bisimilarity relation by hand

CoInductive EqSt (s1 s2 : stream) : Prop := eqst {

eqst_hd : hd s1 = hd s2;

eqst_tl : EqSt (tl s1) (tl s2);

}.
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Compositionnality

Inductive tree (A : Type) : Type :=

| node (label : A) (children : list (tree A)).

▶ the automatically generated induction principle is useless

▶ impossible to abstract over list

Context (F : Type -> Type)

Context (Fmap : ∀ (X Y : Type), (X -> Y) -> F X -> F Y).

Fail Inductive tree (A : Type) : Type :=

| node (label : A) (children : F (tree A)).
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The guard condition

▶ fixpoints and cofixpoints are accepted by Coq only if they
respect a syntactic guard condition

▶ this condition prevents from defining some corecursive
functions that are perfectly justified mathematically

▶ example: shuffle product on streams

Fail CoFixpoint shuffle (s s’ : stream) : stream :=

shuffle (tl s) s’ + shuffle s (tl s’).
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Inspiration from other proof assistants

▶ Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using
bounded natural functors (BNF)

▶ Lean: quotients of polynomial functors [Avigad et al., 2019]

▶ these frameworks require quotient types, propositional and
functional extensionality

▶ goal: a similar framework, in Coq, axiom-free
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Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31



Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31



Functors of types

Definition (Functor)

A functor is defined by its action F on types:

F : Type -> Type

and its action Fmap on functions:

Fmap : ∀ X Y, (X -> Y) -> (F X -> F Y)

Example:
F = list Fmap = List.map

Galaad Langlois An Encoding of (Co)inductive Types in Coq 9 / 31



Constructors as algebras

An inductive type is the “least type” closed under some
constructors (e.g., 0 and succ for the type nat).

Definition (F -algebra)

An F-algebra is a pair (X , a) where X is a type and a : F (X ) → X .

F (X ) = 1+ X 1+ nat nat
[0,succ]
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Initial algebras

Definition (Initial F -algebra)

An initial F -algebra is an algebra a : F (X ) → X such that for all
algebra b : F (Y ) → Y , there exists a unique function f : X → Y
such that the following diagram commutes:

F (X ) F (Y )

X Y

Fmap(f )

a b

f
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Recursion via initiality

Fixpoint iseven (n : nat) : bool :=

match n with

| 0 => true

| S n => negb (iseven n)

end.

1+ nat 1+ 2

nat 2

id+iseven

[0,succ] [true,negb]

iseven

{
iseven(0) = true

iseven(succ(n)) = negb(iseven(n))
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Destructors as coalgebras

A coinductive type is the “greatest type” closed under some
destructors (e.g., hd and tl for the type stream).

Definition (F -coalgebra)

An F-coalgebra is a pair (X , c) where X is a type and
c : X → F (X ).

F (X ) = A× X streamA A× streamA
(hd,tl)
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Final coalgebras

Definition (Final F -coalgebra)

A final F -coalgebra is a coalgebra c : Z → F (Z ) such that for all
coalgebra d : X → F (X ), there exists a unique function f : X → Z
such that the following diagram commutes:

X Z

F (X ) F (Z )

f

d c

F (f )
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Corecursion via finality

CoFixpoint add (s s’ : stream) : stream :=

(hd s + hd s’) ::: (add (tl s) (tl s’)).

stream× stream stream

nat× stream× stream nat× stream

add

λ s s′. (hd(s)+hd(s′),tl(s),tl(s′)) (hd,tl)

id×add

{
hd(add(s, s ′)) = hd(s) + hd(s ′)

tl(add(s, s ′)) = add(tl(s), tl(s ′))
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Examples

Inductive types = initial algebras (µ) :

▶ nat = µX . 1+ X

▶ listA = µX . 1+ A× X

▶ btreeA = µX . A+ X 2 binary trees with leaves labelled in A

Coinductive types = final coalgebras (ν) :

▶ streamA = νX . A× X

▶ colistA = νX . 1+ A× X potentially infinite lists

▶ fbtreeA = νX . A× list(X ) finitely branching trees
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Polynomial functors

Not all functors have an initial algebra/final coalgebra.

▶ in Coq: strict positivity condition

▶ in category theory: polynomial functors

P,Q ::= id | cstS | P + Q | P × Q | PS
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Definitions

Definition (Container)

A container is a pair noted (A ▷ B) where A : Type and
B : A → Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

P(X ) =
∑
a:A

XB(a)

a

x1 x2 xn

b1
b2 bn

. . . . . .

a : A

f : B(a) → X
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Examples

A : Type
B : A → Type

P(X ) =
∑
a:A

XB(a)

P(X ) = X × X (1 ▷ ⋆ 7→ 2)

P(X ) = option(X ) ≃ 1+ X

(
2 ▷

true 7→ 0

false 7→ 1

)
P(X ) = list(X ) ≃

∑
n:nat X

n (nat ▷ n 7→ n)
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Closure properties

Polynomial functors are closed under:

▶ sum

▶ product

▶ composition

▶ (µ and ν in the multivariate case)

which means providing the corresponding constructions on
containers and establishing the associated functor equivalences
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W-types and M-types

Context (A : Type) (B : A -> Type).

Inductive W : Type :=

| sup (a : A) (f : B a -> W) : W.

a

a1 a2 an

b1
b2 bn

. . . . . .

▶ well-founded trees: W = µX . P(X )

▶ non-well-founded trees: M = νX . P(X )

“one (co)inductive to rule them all”
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Extensionality problems

▶ goal: axiom-free implementation

▶ functional extensionality is necessary for the proof that
W-types carry a structure of initial algebras

▶ quotient types are necessary to define coinductive types with
the appropriate notion of equality, namely bisimilarity

▶ these are extensional concepts, while Coq is based on an
intensional type theory

▶ solution : setoids [Hofmann 1995]
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Solution : shift of category

Types 99K Setoids

Definition (Setoid)

A setoid is a pair (X ,≡X ) where X is a type and ≡X is an
equivalence relation on X .

Functions 99K Extensional functions

Definition (Extensional function)

An extensional function between two setoids (X ,≡X ) and (Y ,≡Y )
is a function f : X → Y such that if x ≡X x ′ then f (x) ≡Y f (x ′).

0 1 2 + ×
√

A → Type
∑ ∏

?
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Setoid families

▶ what is a setoid family on A?

▶ B : A → Setoid

▶ a ≡ a′ =⇒ B(a) ≈ B(a′)

▶ proof-irrelevant setoid families [Palmgren 2012]

▶ transport function along an equivalence p : a ≡ a′,
p∗ : B(a) → B(a′), isomorphism B(a) ∼= B(a′)

a a′

B(a) B(a′)

p

p∗

p−1
∗
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Polynomial functors of setoids

Structure container := {

A : Setoid;

B : setoid_family A }.

Structure PFUNCTOR := {

pf_func :> FUNCTOR SETOIDS SETOIDS;

pf_cont : container;

pfE : pf_func ≃ extension pf_cont }.
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W-setoids and M-setoids

▶ counterparts of W- and M-types in the category of setoids

▶ W- and M-types enriched with an equivalence relation

▶ extensionnal

▶ initiality of the algebra of W-setoids: very challenging, already
done in Coq [Palmgren 2015]

▶ finality of the coalgebra of M-setoids: easier

(implemented in the code)
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In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition P := nat * X.

2. Define the desired (co)inductive setoid as the W-setoid
associated to the functor.

Definition stream_coalg := nu coalg P.

Definition stream := coalg car stream_coalg.

Definition final_stream_coalg : final stream_coalg :=

final nu P.

2’. Use your own type, enriched with an equivalence relation, a
(co)algebra structure and a proof that it is an initial/final
(co)algebra of the functor.
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In practice (2)

3. The (Co)Lambek lemma provides a constructor and a
destructor.

Definition iso_fix : stream ≃ nat * stream :=

CoLambek final_stream_coalg.

4. The initiality/finality property provides a (co)recursor to define
(co)recursive functions.

Definition stream_corec (X : Setoid) (c : X .−→ nat * X)

: X .−→ stream :=

corec final_stream_coalg c.

Definition add : stream * stream .−→ stream :=

stream_corec (stream * stream)

(fun s s’ => (hd s + hd s’, (tl s, tl s’))).

5. A (co)induction principle is provided for proofs.
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Future work

▶ automation and syntactic sugar

▶ nested and mixed inductive-coinductive types → multivariate
polynomial functors

▶ mutually defined (co)inductive types → dependent polynomial
functors

▶ quotients of polynomial functors

▶ more powerful (co)recursion principle → up-to techniques
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