An Encoding of (Co)inductive Types in Coq

 via W - and M -types in the category of setoidsGalaad Langlois ${ }^{1}$, Damien Pous ${ }^{2}$, Yannick Zakowski ${ }^{3}$

${ }^{1}$ ENS de Lyon
${ }^{2}$ CNRS
${ }^{3}$ Inria

The Coq Workshop 2023, July 31

Goal: a library to easily define and work with datatypes such as 1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$

Goal: a library to easily define and work with datatypes such as 1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$

Goal: a library to easily define and work with datatypes such as 1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y \cdot X+Y$

Goal: a library to easily define and work with datatypes such as

$$
\text { 1. } \mu X \cdot \mathbf{1}+A \times X^{2}
$$

2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y . X+Y$

Ingredients:

Goal: a library to easily define and work with datatypes such as

$$
\text { 1. } \mu X \cdot \mathbf{1}+A \times X^{2}
$$

2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y . X+Y$

Ingredients:

- category theory can give constructors, pattern-matching, recursion principles, induction principles

Goal: a library to easily define and work with datatypes such as

1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y . X+Y$

Ingredients:

- category theory can give constructors, pattern-matching, recursion principles, induction principles
- W-types and M-types: a generic family of (co)inductive types

Goal: a library to easily define and work with datatypes such as

1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y . X+Y$

Ingredients:

- category theory can give constructors, pattern-matching, recursion principles, induction principles
- W-types and M-types: a generic family of (co)inductive types
- setoids: a necessity for an axiom-free Coq implementation

Goal: a library to easily define and work with datatypes such as

1. $\mu X \cdot \mathbf{1}+A \times X^{2}$
2. $\nu X . A \times X^{2}$
3. $\mu X . A \times \mathcal{F}(X)$
4. $\nu X \cdot \mu Y . X+Y$

Ingredients:

- category theory can give constructors, pattern-matching, recursion principles, induction principles
- W-types and M-types: a generic family of (co)inductive types
- setoids: a necessity for an axiom-free Coq implementation

Current state: an experiment
(1) Some limits of (co) inductive types in Coq
(2) (Co)inductive types, categorically
(3) Polynomial functors

4 Coq implementation: use of setoids

Equality for coinductive types

```
CoInductive stream := cons { hd : nat; tl : stream }.
CoFixpoint zeros := cons O zeros.
CoFixpoint zeros' := cons 0 (cons 0 zeros').
```


Equality for coinductive types

```
CoInductive stream := cons { hd : nat; tl : stream }.
CoFixpoint zeros := cons O zeros.
CoFixpoint zeros' := cons 0 (cons 0 zeros').
- impossible to prove zeros = zeros'
- need to define a bisimilarity relation by hand
```

```
CoInductive EqSt (s1 s2 : stream) : Prop := eqst {
    eqst_hd : hd s1 = hd s2;
    eqst_tl : EqSt (tl s1) (tl s2);
}.
```


Compositionnality

```
Inductive tree (A : Type) : Type :=
    | node (label : A) (children : list (tree A)).
```


Compositionnality

Inductive tree (A : Type) : Type :=
| node (label : A) (children : list (tree A)).

- the automatically generated induction principle is useless

Compositionnality

Inductive tree (A : Type) : Type :=
| node (label : A) (children : list (tree A)).

- the automatically generated induction principle is useless
- impossible to abstract over list

Context (F : Type -> Type)
Context (Fmap : \forall (X Y : Type), (X -> Y) -> F X \rightarrow F Y).
Fail Inductive tree (A : Type) : Type :=
| node (label : A) (children : F (tree A)).

The guard condition

- fixpoints and cofixpoints are accepted by Coq only if they respect a syntactic guard condition
- fixpoints and cofixpoints are accepted by Coq only if they respect a syntactic guard condition
- this condition prevents from defining some corecursive functions that are perfectly justified mathematically
- fixpoints and cofixpoints are accepted by Coq only if they respect a syntactic guard condition
- this condition prevents from defining some corecursive functions that are perfectly justified mathematically
- example: shuffle product on streams

Fail CoFixpoint shuffle (s s' : stream) : stream := shuffle (tl s) s' + shuffle s (tl s').

Inspiration from other proof assistants

- Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using bounded natural functors (BNF)

Inspiration from other proof assistants

- Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using bounded natural functors (BNF)
- Lean: quotients of polynomial functors [Avigad et al., 2019]

Inspiration from other proof assistants

- Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using bounded natural functors (BNF)
- Lean: quotients of polynomial functors [Avigad et al., 2019]
- these frameworks require quotient types, propositional and functional extensionality
- Isabelle/HOL: AmiCo library [Blanchette et al., 2017] using bounded natural functors (BNF)
- Lean: quotients of polynomial functors [Avigad et al., 2019]
- these frameworks require quotient types, propositional and functional extensionality
- goal: a similar framework, in Coq, axiom-free
(1) Some limits of (co)inductive types in Coq
(2) (Co)inductive types, categorically
(3) Polynomial functors

4 Coq implementation: use of setoids

Functors of types

Definition (Functor)

A functor is defined by its action F on types:

```
F : Type -> Type
```


Definition (Functor)

A functor is defined by its action F on types:

```
F : Type -> Type
```

and its action $F^{\text {map }}$ on functions:

```
Fmap : \forall X Y, (X -> Y) -> (F X -> F Y)
```


Definition (Functor)

A functor is defined by its action F on types:

```
F : Type -> Type
```

and its action $F^{\text {map }}$ on functions:

$$
\text { Fmap : } \forall \mathrm{X} \text { Y, (X -> Y) }->(\mathrm{F} \text { X } \rightarrow \mathrm{F} \text { Y) }
$$

Example:

$$
F=\text { list } \quad F^{\text {map }}=\text { List } . \text { map }
$$

Constructors as algebras

An inductive type is the "least type" closed under some constructors (e.g., 0 and succ for the type nat).

Constructors as algebras

An inductive type is the "least type" closed under some constructors (e.g., 0 and succ for the type nat).

Definition (F-algebra)

An F-algebra is a pair (X, a) where X is a type and $a: F(X) \rightarrow X$.

Constructors as algebras

An inductive type is the "least type" closed under some constructors (e.g., 0 and succ for the type nat).

Definition (F-algebra)

An F-algebra is a pair (X, a) where X is a type and $a: F(X) \rightarrow X$.

$$
F(X)=\mathbf{1}+X \quad \mathbf{1}+\text { nat } \xrightarrow{[0, \text { succ }]} \text { nat }
$$

Definition (Initial F-algebra)

An initial F-algebra is an algebra $a: F(X) \rightarrow X$ such that for all algebra $b: F(Y) \rightarrow Y$, there exists a unique function $f: X \rightarrow Y$ such that the following diagram commutes:

$$
\begin{gathered}
F(X) \xrightarrow{F^{\text {map }}(f)} F(Y) \\
a \\
\vdots \\
X
\end{gathered}
$$

Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
match n with
    | 0 => true
    | S n => negb (iseven n)
    end.
```


Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
    match n with
    | 0 => true
    | S n => negb (iseven n )
    end.
```

$\mathbf{1}+$ nat
$[0$, succ $]$
nat

Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
    match n with
    | 0 => true
    | S n => negb (iseven n )
    end.
```

$\mathbf{1}+$ nat
$[0$, succ $]$
nat

Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
    match n with
    | 0 => true
    | S n => negb (iseven n )
    end.
```


Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
match n with
    | 0 => true
    | S n => negb (iseven n)
    end.
```


Recursion via initiality

```
Fixpoint iseven (n : nat) : bool :=
    match n with
    | 0 => true
    | S n => negb (iseven n)
    end.
```


$$
\left\{\begin{array}{l}
\operatorname{iseven}(0)=\operatorname{true} \\
\operatorname{iseven}(\operatorname{succ}(n))=\operatorname{negb}(\operatorname{iseven}(n))
\end{array}\right.
$$

Destructors as coalgebras

A coinductive type is the "greatest type" closed under some destructors (e.g., hd and tl for the type stream).

Destructors as coalgebras

A coinductive type is the "greatest type" closed under some destructors (e.g., hd and tl for the type stream).

Definition (F-coalgebra)

An F-coalgebra is a pair (X, c) where X is a type and $c: X \rightarrow F(X)$.

Destructors as coalgebras

A coinductive type is the "greatest type" closed under some destructors (e.g., hd and tl for the type stream).

Definition (F-coalgebra)

An F-coalgebra is a pair (X, c) where X is a type and $c: X \rightarrow F(X)$.

$$
F(X)=A \times X \quad \text { stream }_{A} \xrightarrow{(\mathrm{hd}, \mathrm{tl})} A \times \text { stream }_{A}
$$

Definition (Final F-coalgebra)

A final F-coalgebra is a coalgebra $c: Z \rightarrow F(Z)$ such that for all coalgebra $d: X \rightarrow F(X)$, there exists a unique function $f: X \rightarrow Z$ such that the following diagram commutes:

Corecursion via finality

CoFixpoint add (s s' : stream) : stream := (hd $\left.s+h d s^{\prime}\right)::($ add (tl s) (tl s')).

Corecursion via finality

CoFixpoint add (s s' : stream) : stream := (hd $\left.s+h d s^{\prime}\right)::\left(\operatorname{add}(t l \mathrm{~s})\left(\mathrm{tl} \mathrm{s}^{\prime}\right)\right)$.

stream $\downarrow(\mathrm{hd}, \mathrm{tl})$
nat \times stream

Corecursion via finality

```
CoFixpoint add (s s' : stream) : stream :=
(hd \(\left.s+h d s^{\prime}\right)::(\) add (tl s) (tl s')).
```


\downarrow (hd,tl)
nat \times stream

Corecursion via finality

```
    CoFixpoint add (s s' : stream) : stream :=
        (hd s + hd s') ::: (add (tl s) (tl s')).
            stream }\times\mathrm{ stream --------------> stream
\lambdas s'.(hd(s)+hd(s'),tl(s),tl(\mp@subsup{s}{}{\prime}))\downarrow
|(hd,tl)
    nat }\times\mathrm{ stream
```


Corecursion via finality

```
    CoFixpoint add (s s' : stream) : stream :=
        (hd s + hd s') ::: (add (tl s) (tl s')).
            stream }\times\mathrm{ stream ------- add --------}\mathrm{ stream
\lambdas s'.(hd(s)+hd(\mp@subsup{s}{}{\prime}),\textrm{tl}(s),\textrm{tl}(\mp@subsup{s}{}{\prime}))\downarrow}\downarrow|\mp@code{nat }\times\mathrm{ stream }\times\mathrm{ stream 
|(hd,tl)
    nat }\times\mathrm{ stream
```


Corecursion via finality

$$
\begin{aligned}
& \text { CoFixpoint add (s s' : stream) : stream := } \\
& \text { (hd } \left.s+h d s^{\prime}\right)::(\text { add (tl s) (tl s')). } \\
& \text { stream } \times \text { stream ------- add } \\
& \begin{aligned}
\lambda s s^{\prime} .\left(\mathrm{hd}(s)+\mathrm{hd}\left(s^{\prime}\right), \mathrm{tl}(s), \mathrm{tl}\left(s^{\prime}\right)\right) \downarrow \\
\text { nat } \times \text { stream } \times \text { stream }- \text { id } \times \text { add } \text { nat } \times \text { stream }
\end{aligned} \\
& \left\{\begin{array}{l}
\operatorname{hd}\left(\operatorname{add}\left(s, s^{\prime}\right)\right)=\operatorname{hd}(s)+\operatorname{hd}\left(s^{\prime}\right) \\
\operatorname{tl}\left(\operatorname{add}\left(s, s^{\prime}\right)\right)=\operatorname{add}\left(\operatorname{tl}(s), \operatorname{tl}\left(s^{\prime}\right)\right)
\end{array}\right.
\end{aligned}
$$

Examples

Inductive types $=$ initial algebras (μ) :

Examples

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$

Examples

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$

Examples

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$
- btree $_{A}=\mu X . A+X^{2} \quad$ binary trees with leaves labelled in A

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$
- btree $_{A}=\mu X . A+X^{2} \quad$ binary trees with leaves labelled in A

Coinductive types $=$ final coalgebras (ν) :

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$
- btree $_{A}=\mu X . A+X^{2} \quad$ binary trees with leaves labelled in A

Coinductive types $=$ final coalgebras (ν) :

- stream $_{A}=\nu X . A \times X$

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$
- btree $_{A}=\mu X . A+X^{2} \quad$ binary trees with leaves labelled in A

Coinductive types $=$ final coalgebras (ν) :

- stream $_{A}=\nu X . A \times X$
$-\operatorname{colist}_{A}=\nu X .1+A \times X$
potentially infinite lists

Inductive types $=$ initial algebras (μ) :

- nat $=\mu X .1+X$
- list $_{A}=\mu X .1+A \times X$
- btree $_{A}=\mu X . A+X^{2} \quad$ binary trees with leaves labelled in A

Coinductive types $=$ final coalgebras (ν) :

- stream $_{A}=\nu X . A \times X$
$-\operatorname{colist}_{A}=\nu X .1+A \times X$
- fbtree $_{A}=\nu X . A \times \operatorname{list}(X)$
potentially infinite lists finitely branching trees
(1) Some limits of (co)inductive types in Coq
(2) (Co)inductive types, categorically
(3) Polynomial functors

4 Coq implementation: use of setoids

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

- in Coq: strict positivity condition

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

- in Coq: strict positivity condition
- in category theory: polynomial functors

Polynomial functors

Not all functors have an initial algebra/final coalgebra.

- in Coq: strict positivity condition
- in category theory: polynomial functors

$$
P, Q::=\operatorname{id}\left|\operatorname{cst}_{s}\right| P+Q|P \times Q| P^{S}
$$

Definitions

Definition (Container)

A container is a pair noted $(A \triangleright B)$ where A : Type and $B: A \rightarrow$ Type.

Definitions

Definition (Container)

A container is a pair noted $(A \triangleright B)$ where A : Type and $B: A \rightarrow$ Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

$$
P(X)=\sum_{a: A} X^{B(a)}
$$

Definitions

Definition (Container)

A container is a pair noted $(A \triangleright B)$ where A : Type and $B: A \rightarrow$ Type.

Definition (Polynomial functor)

A polynomial functor is, up to equivalence, a functor of the form:

$$
P(X)=\sum_{a: A} X^{B(a)}
$$

Examples

$A:$ Type
$B: A \rightarrow$ Type

$$
P(X)=\sum_{a: A} X^{B(a)}
$$

Examples

$$
\begin{array}{cc}
\begin{array}{c}
A: \text { Type } \\
B: A \rightarrow \text { Type }
\end{array} & P(X)=\sum_{\mathrm{a}: A} X^{B(a)} \\
P(X)=X \times X & (\mathbf{1} \triangleright \star \mapsto \mathbf{2}) \\
\hline
\end{array}
$$

Examples

$$
\begin{gathered}
\begin{array}{c}
A: \text { Type } \\
B: A \rightarrow \text { Type }
\end{array} \quad P(X)=\sum_{a: A} X^{B(a)} \\
\begin{array}{|l|l}
\hline P(X)=X \times X & (\mathbf{1} \triangleright \star \mapsto \mathbf{2}) \\
\hline P(X)=\text { option }(X) \simeq \mathbf{1}+X & \left(\mathbf{2 \triangleright} \begin{array}{r}
\text { true } \mapsto \mathbf{0} \\
\text { false } \mapsto \mathbf{1}
\end{array}\right) \\
\hline
\end{array}
\end{gathered}
$$

$\begin{gathered} A: \text { Type } \\ B: A \rightarrow \text { Type } \end{gathered}$	$P(X)=\sum_{a: A} X^{B(a)}$
$P(X)=X \times X$	$(1 \triangleright \star \mapsto 2)$
$P(X)=\operatorname{option}(X) \simeq 1+X$	$\left(\begin{array}{cc}\text { 2 } & \text { true } \mapsto \mathbf{0} \\ & \text { false } \mapsto \mathbf{1}\end{array}\right)$
$P(X)=\operatorname{list}(X) \simeq \sum_{n: \text { nat }} X^{n}$	(nat $\triangleright n \mapsto \mathbf{n}$)

Closure properties

Polynomial functors are closed under:

- sum
- product
- composition
- (μ and ν in the multivariate case)
which means providing the corresponding constructions on containers and establishing the associated functor equivalences

W-types and M-types

```
Context (A : Type) (B : A -> Type).
Inductive W : Type :=
| sup (a : A) (f : B a -> W) : W.
```

W-types and M-types

Context (A : Type) ($\mathrm{B}: \mathrm{A} \rightarrow$ Type).
Inductive $\mathrm{W}:$ Type $:=$
| sup ($\mathrm{a}: \mathrm{A}$) (f : B a $\rightarrow \mathrm{W}): \mathrm{W}$.

W-types and M-types

```
Context (A : Type) (B : A -> Type).
Inductive W : Type :=
| sup (a : A) (f : B a -> W) : W.
```


- well-founded trees: $W=\mu X . P(X)$

W-types and M-types

```
Context (A : Type) (B : A -> Type).
Inductive W : Type :=
| sup (a : A) (f : B a -> W) : W.
```


- well-founded trees: $W=\mu X . P(X)$
- non-well-founded trees: $M=\nu X . P(X)$

W-types and M-types

```
Context (A : Type) (B : A -> Type).
Inductive W : Type :=
| sup (a : A) (f : B a -> W) : W.
```


- well-founded trees: $W=\mu X . P(X)$
- non-well-founded trees: $M=\nu X . P(X)$
"one (co)inductive to rule them all"

(1) Some limits of (co)inductive types in Coq

(2) (Co)inductive types, categorically
(3) Polynomial functors

4 Coq implementation: use of setoids

Extensionality problems

- goal: axiom-free implementation

Extensionality problems

- goal: axiom-free implementation
- functional extensionality is necessary for the proof that W-types carry a structure of initial algebras

Extensionality problems

- goal: axiom-free implementation
- functional extensionality is necessary for the proof that W-types carry a structure of initial algebras
- quotient types are necessary to define coinductive types with the appropriate notion of equality, namely bisimilarity
- goal: axiom-free implementation
- functional extensionality is necessary for the proof that W-types carry a structure of initial algebras
- quotient types are necessary to define coinductive types with the appropriate notion of equality, namely bisimilarity
- these are extensional concepts, while Coq is based on an intensional type theory
- goal: axiom-free implementation
- functional extensionality is necessary for the proof that W-types carry a structure of initial algebras
- quotient types are necessary to define coinductive types with the appropriate notion of equality, namely bisimilarity
- these are extensional concepts, while Coq is based on an intensional type theory
- solution : setoids [Hofmann 1995]

Types $\rightarrow-$ Setoids

Definition (Setoid)

A setoid is a pair $(X, \equiv x)$ where X is a type and $\equiv x$ is an equivalence relation on X.

$$
\text { Types }--\rightarrow \text { Setoids }
$$

Definition (Setoid)

A setoid is a pair $(X, \equiv x)$ where X is a type and $\equiv x$ is an equivalence relation on X.

Functions \rightarrow Extensional functions

Definition (Extensional function)

An extensional function between two setoids $(X, \equiv X)$ and $(Y, \equiv Y)$ is a function $f: X \rightarrow Y$ such that if $x \equiv x x^{\prime}$ then $f(x) \equiv_{Y} f\left(x^{\prime}\right)$.

$$
\text { Types }--\rightarrow \text { Setoids }
$$

Definition (Setoid)

A setoid is a pair $(X, \equiv x)$ where X is a type and $\equiv x$ is an equivalence relation on X.

Functions \rightarrow Extensional functions

Definition (Extensional function)

An extensional function between two setoids $(X, \equiv X)$ and $(Y, \equiv Y)$ is a function $f: X \rightarrow Y$ such that if $x \equiv x x^{\prime}$ then $f(x) \equiv_{Y} f\left(x^{\prime}\right)$.

$$
012+\times \sqrt{ }
$$

Types \rightarrow - Setoids

Definition (Setoid)

A setoid is a pair $(X, \equiv x)$ where X is a type and $\equiv x$ is an equivalence relation on X.

Functions \rightarrow Extensional functions

Definition (Extensional function)

An extensional function between two setoids $(X, \equiv X)$ and $(Y, \equiv Y)$ is a function $f: X \rightarrow Y$ such that if $x \equiv x x^{\prime}$ then $f(x) \equiv_{Y} f\left(x^{\prime}\right)$.

$$
012+\times \sqrt{ } \quad A \rightarrow \text { Type } \sum \prod ?
$$

Setoid families

- what is a setoid family on A ?
- what is a setoid family on A ?
- $B: A \rightarrow$ Setoid
- what is a setoid family on A ?
- $B: A \rightarrow$ Setoid
- $a \equiv a^{\prime} \Longrightarrow B(a) \approx B\left(a^{\prime}\right)$
- what is a setoid family on A ?
- $B: A \rightarrow$ Setoid
- $a \equiv a^{\prime} \Longrightarrow B(a) \approx B\left(a^{\prime}\right)$
- proof-irrelevant setoid families [Palmgren 2012]
- what is a setoid family on A ?
- $B: A \rightarrow$ Setoid
- $a \equiv a^{\prime} \Longrightarrow B(a) \approx B\left(a^{\prime}\right)$
- proof-irrelevant setoid families [Palmgren 2012]
- transport function along an equivalence $p: a \equiv a^{\prime}$, $p_{*}: B(a) \rightarrow B\left(a^{\prime}\right)$, isomorphism $B(a) \cong B\left(a^{\prime}\right)$

Structure container := \{
A : Setoid;
B : setoid_family A \}.

Structure container := \{
A : Setoid;
B : setoid_family A \}.
Structure PFUNCTOR := \{
pf_func :> FUNCTOR SETOIDS SETOIDS;
pf_cont : container;
pfE : pf_func \simeq extension pf_cont \}.

W-setoids and M-setoids

- counterparts of W- and M-types in the category of setoids

W-setoids and M-setoids

- counterparts of W - and M-types in the category of setoids
- W- and M-types enriched with an equivalence relation

W-setoids and M-setoids

- counterparts of W - and M-types in the category of setoids
- W- and M-types enriched with an equivalence relation
- extensionnal
- counterparts of W- and M-types in the category of setoids
- W- and M-types enriched with an equivalence relation
- extensionnal
- initiality of the algebra of W-setoids: very challenging, already done in Coq [Palmgren 2015]
- counterparts of W- and M-types in the category of setoids
- W- and M-types enriched with an equivalence relation
- extensionnal
- initiality of the algebra of W-setoids: very challenging, already done in Coq [Palmgren 2015]
- finality of the coalgebra of M-setoids: easier
- counterparts of W- and M-types in the category of setoids
- W- and M-types enriched with an equivalence relation
- extensionnal
- initiality of the algebra of W-setoids: very challenging, already done in Coq [Palmgren 2015]
- finality of the coalgebra of M-setoids: easier
(implemented in the code)

In practice (1)

1. Define a PFUNCTOR using the provided DSL. Definition P := nat * X.

In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition P := nat * X .
2. Define the desired (co)inductive setoid as the W -setoid associated to the functor.

```
Definition stream_coalg := nu_coalg P.
Definition stream := coalg_car stream_coalg.
Definition final_stream_coalg : final stream_coalg :=
    final_nu P.
```


In practice (1)

1. Define a PFUNCTOR using the provided DSL.

Definition $\mathrm{P}:=$ nat $* \mathrm{X}$.
2. Define the desired (co)inductive setoid as the W-setoid associated to the functor.

```
Definition stream_coalg := nu_coalg P.
Definition stream := coalg_car stream_coalg.
Definition final_stream_coalg : final stream_coalg :=
    final_nu P.
```

2'. Use your own type, enriched with an equivalence relation, a (co)algebra structure and a proof that it is an initial/final (co)algebra of the functor.

In practice (2)

3. The (Co)Lambek lemma provides a constructor and a destructor.

Definition iso_fix : stream \simeq nat * stream := CoLambek final_stream_coalg.

In practice (2)

3. The (Co)Lambek lemma provides a constructor and a destructor.
```
Definition iso_fix : stream \simeq nat * stream :=
    CoLambek final_stream_coalg.
```

4. The initiality/finality property provides a (co)recursor to define (co)recursive functions.
```
Definition stream_corec (X : Setoid) (c : X > nat * X)
    : X .
    corec final_stream_coalg c.
Definition add : stream * stream | stream :=
    stream_corec (stream * stream)
    (fun s s' => (hd s + hd s', (tl s, tl s'))).
```


In practice (2)

3. The (Co)Lambek lemma provides a constructor and a destructor.
```
Definition iso_fix : stream \simeq nat * stream :=
    CoLambek final_stream_coalg.
```

4. The initiality/finality property provides a (co)recursor to define (co)recursive functions.
```
Definition stream_corec (X : Setoid) (c : X > nat * X)
    : X .
    corec final_stream_coalg c.
Definition add : stream * stream | stream :=
    stream_corec (stream * stream)
        (fun s s' => (hd s + hd s', (tl s, tl s'))).
```

5. A (co)induction principle is provided for proofs.

- automation and syntactic sugar
- automation and syntactic sugar
- nested and mixed inductive-coinductive types \rightarrow multivariate polynomial functors
- automation and syntactic sugar
- nested and mixed inductive-coinductive types \rightarrow multivariate polynomial functors
- mutually defined (co)inductive types \rightarrow dependent polynomial functors
- automation and syntactic sugar
- nested and mixed inductive-coinductive types \rightarrow multivariate polynomial functors
- mutually defined (co)inductive types \rightarrow dependent polynomial functors
- quotients of polynomial functors
- automation and syntactic sugar
- nested and mixed inductive-coinductive types \rightarrow multivariate polynomial functors
- mutually defined (co)inductive types \rightarrow dependent polynomial functors
- quotients of polynomial functors
- more powerful (co)recursion principle \rightarrow up-to techniques

