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This presentation

▶ Goal: We want to do equational reasoning on OCaml
programs

▶ Approach: reuse1 the output of CoqGen (OCaml → Coq)
▶ CoqGen encapsulates effects into a monad;

we therefore want to use monadic equational reasoning
▶ we want to keep OCaml programs executable in Coq

▶ Contributions:
▶ equational theory to reason about OCaml programs
▶ verification library (design interface + lemmas)
▶ concrete, Coq-executable examples

1thus environment-friendly...



Building on previous work

This work relies on the following components:
▶ SSReflect

▶ In particular, its rewriting tactic and the under tactical

▶ Monae [Affeldt et al., 2019]
▶ Hierarchy of monad interfaces + models + applications
▶ Which relies on Hierarchy-Builder [Cohen et al., 2020]

▶ CoqGen [Garrigue and Saikawa, 2022]
▶ ocamlc -c -coq
▶ monadic shallow embedding of OCaml programs into Coq



Soundness by translation [Garrigue and Saikawa, 2022]

P

x

OCaml Coq

[[x]]

[[P ]]

P (x) [[P ]][[x]]

Input

Program

Output

For function P : τ → τ ′ and
input x : τ

▶ P translates to [[P ]], and
⊢ [[P ]] : [[τ → τ ′]]

▶ x translates to [[x]], and
⊢ [[x]] : [[τ ]]

▶ run [[P ]][[x]] in Coq to
check

1. it evaluates to [[P (x)]]
2. it is typed as

⊢ [[P (x)]] : [[τ ′]]

Executability is a design principle
of CoqGen
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Example: translation of a pure function

OCaml (pure.ml)

let discriminant a b c = b * b - 4 * a * c

⇓ ocamlc -c -coq

Coq

Definition discriminant (a b c : coq_type ml int)

: coq_type ml_int :=

PrimInt63.sub (PrimInt63.mul b b)

(PrimInt63.mul (PrimInt63.mul 4%int63 a) c).

▶ ml int is a deep-embedding of the OCaml type int and
(coq type ml int) is its interpretation in Coq.
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Translation of types
OCaml Coq

(primitive)

int, bool, ...
(function)

t0 → t1

(reference)

t ref

(user-defined)

type 'a rlist =

| Nil

| Cons of

'a * 'a rlist ref

Inductive ml_type :=

| ml_int | ml_bool | ...

| ml_arrow : ml_type -> ml_type -> ml_type

| ml_ref : ml_type -> ml_type

| ml_rlist : ml_type -> ml_type.

Variant loc (ml_type:Type) (locT:eqType)

: ml_type -> Type :=

mkloc T : locT -> loc locT T.

Inductive rlist (a : Type) (a_1 : ml_type) :=

| Nil

| Cons : a -> loc (ml_rlist a_1) -> rlist a a_1.

▶ ml_type is a deep-embedding of the syntax of OCaml types

▶ loc and rlist are auxiliary types for the semantics



Translation of types – interpretation
reminder� �

Variant loc (ml_type:Type) (locT:eqType)

: ml_type -> Type :=

mkloc T : locT -> loc locT T.

Inductive rlist (a : Type) (a_1 : ml_type) :=

| Nil

| Cons : a -> loc (ml_rlist a_1) -> rlist a a_1.� �
Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=

match T with

| ml_int => int

| ml_bool => bool

| ml_unit => unit

| ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)

| ml_ref T1 => loc T1

| ml_rlist T1 => rlist (coq_type63 T1) T1

end.

▶ References need both the syntax and interpretaion of a type

▶ Functions may have effects (M at the codomain)



Packing syntactic and semantic types

HB.mixin Structure isML_universe (ml_type : Type) := {

eqclass : Equality.class_of ml_type ;

coq_type : forall M : Type -> Type, ml_type -> Type ;

ml_nonempty : ml_type ;

val_nonempty : forall M, coq_type M ml_nonempty }.

▶ we use Hierarchy-Builder to combine the syntax and
interpretation =⇒ an “ML_universe”.

▶ additional ml_nonempty and val_nonempty assures the
existence of at least one nonempty type
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Typed store monad - a global monad for OCaml

The M in
Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=

match T with

| ml_int => int

| ml_bool => bool

| ml_unit => unit

| ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)

| ml_ref T1 => loc T1

| ml_rlist T1 => rlist (coq_type63 T1) T1

end.

needs to handle all OCaml effects

▶ mutable values (references)

▶ failures

▶ exceptions, etc.

We define the “typed store monad” to model the first two.



Defining a monad with Monae

We rely on Monae to handle definitions about monads:

▶ define the interface (operators and theory) of a monad
to write equational proofs on programs

▶ prove and define instances of the interface
to see the consistency and properties of the interface

These definitions are systematically organized using
Hierarchy-Builder.



The typed store monad

▶ In the interface part, the typed store monad inherits the basic
monad interface that has only bind and ret, adding four
operators (cnew, cget, cput, crun) and several equations

▶ In the model part, we give executable definitions of operators
and prove the equations for them.

For example, here is the interface and model of cget:
(in hierarchy.v)
cget : forall {T}, loc locT T -> M (coq_type M T) ;

(in typed_store_model.v)
Let cget T (r : loc T) : M (coq_type T) :=

fun st =>

if nth_error (ofEnv st) (loc_id r) is Some (mkbind T' v) then

if coerce T v is Some u then inr (u, st) else inl tt

else inl tt.

▶ coerce is a boolean function that compares a type
T : ml_type with the type of some value v : coq_type M T'



Dynamic type checking: coerce

Definition coerce (T1 T2 : X) (v : f T1) : option (f T2) :=

if @eqPc _ T1 T2 is ReflectT H then Some (eq_rect _ _ v _ H) else None.

Definition cget T (r : loc T) : M (coq_type M T) :=

fun st =>

if nth_error st (loc_id r) is Some (mkbind T' v) then

if coerce T v is Some u then Ret (u, st) else fail

else fail.

▶ coerce assures that an access to the store is correctly typed
=⇒ the dynamically typed store monad

▶ dynamic type checking needs dynamic type comparison
=⇒ the syntactic types are necessary



Combining things into a model

MA := Env → (1 + Env ×A)

Section predef.

Variable ml_type : ML_universe. (* has a canonical coq_type *)

Record binding (M : Type -> Type) :=

mkbind { bind_type : ml_type; bind_val : coq_type M bind_type }.

Arguments mkbind {M bind_type}.

Definition M0 Env (T : UU0) := MS Env option_monad T.

(* transformer MS provides the monad interface *)

End predef.

#[bypass_check(positivity)]

Inductive Env (ml_type : ML_universe) :=

mkEnv : seq (binding ml_type (M0 (Env _))) -> Env _.

(* entangle the monad and environment *)

Section def.

Variable ml_type : ML_universe.

Definition M (Env ml_type) (T : UU0) := MS Env option_monad T.

End def.



Equations of the Typed Store Monad

Equations are basic reasoning tools that relates the operators of
the monad
Sample relation between cget and cnew:
cgetnewD :

forall T T' (r : loc locT T) (s : coq_type M T') A

(k : loc locT T' -> coq_type M T -> coq_type M T -> M A),

cget r >>= (fun u => cnew s >>= (fun r' => cget r >>= k r' u)) =

cget r >>= (fun u => cnew s >>= (fun r' => k r' u u))

▶ Direct paraphrase: the cnew operator does not change the
meaning of cget

▶ Intuition: this equation expresses the “freshness” of locations

Not that in practice, we rather use a “derived” equation:
Lemma cchknewget T T' (r : loc T) s (A : UU0) k :

cchk r >> (cnew T' s >>= fun r' => cget r >>= k r') =

cget r >>= (fun u => cnew T' s >>= k ^~ u) :> M A.
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fibonacci

Fixpoint fibo_ref n (a b : loc ml_int) : M unit :=

if n is n.+1 then

cget a >>= (fun x => cget b >>= fun y => cput a y >> cput b (x + y))

>> fibo_ref n a b

else skip.

Fixpoint fibo_rec n :=

if n is m.+1 then

if m is k.+1 then fibo_rec k + fibo_rec m else 1

else 1.

Theorem fibo_ref_ok n :

crun (cnew ml_int 1 >>=

(fun a => cnew ml_int 1 >>= fun b => fibo_ref n a b >> cget a))

= Some (fibo_rec n).



factorial on Int63

Definition fact_for63 (n : coq_type ml_int) : M (coq_type ml_int) :=

do v <- cnew ml_int 1%int63;

do _ <-

(do u <- Ret 1%int63;

do v_1 <- Ret n;

forloop63 u v_1

(fun i =>

do v_1 <- (do v_1 <- cget v; Ret (mul v_1 i));

cput v v_1));

cget v.

Theorem fact_for63_ok :

crun (fact_for63 (N2int n)) = Some (N2int (fact_rec n)).



cyclic graph

Definition cycle (T : ml_type) (a b : coq_type T)

: M (coq_type (ml_rlist T)) :=

do r <- cnew (ml_rlist T) (Nil (coq_type T) T);

do l <-

(do v <- cnew (ml_rlist T) (Cons (coq_type T) T b r);

Ret (Cons (coq_type T) T a v));

do _ <- cput r l; Ret l.

Definition hd (T : ml_type) (def : coq_type T)

(param : coq_type (ml_rlist T)) : coq_type T :=

match param with | Nil => def | Cons a _ => a end.

Lemma hd_is_true :

crun

(do l <- cycle ml_bool true false; Ret (hd ml_bool false l))

= Some true.
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Construction of the typed store monad

Monad interface = (type of) operators + equations

A model consists in

▶ an implementation of the operators

▶ proofs that the equations are valid

In our work, a model has two purposes:

1. validate the equations

2. be executable

Two models:

▶ monad_model.v: does not require axioms

▶ typed_store_model.v: requires bypass of positivity check

Technical note: monad transformers from Monae help writing the

model of the typed store monad while keeping proofs “readable” (can be

displayed in a small screen and principled)



Comparison with the ST monad

The ST monad [Launchbury and Jones, 1994, Sect. 2.2] has
similarly typed operations as our typed store monad:

▶ ST monad: runST : forall a, (forall s, ST s a) -> a

▶ Ours: crun : forall a, M A -> option a

the universal parameter s to ST is used to distinguish different
levels of runST’s; STRef is also similar to loc:

▶ ST monad: newST : forall a, a -> ST s (STRef s a)

▶ Ours: cnew : forall a, coq_type a -> M (loc a)



Uses of HB

▶ extend the hierarchy without mistakes (declarations of
coercions and canonical instances are error-prone)

▶ flexibly combine existing monads and transformers to build
models

▶ parametrize models by various ML universes, attaching
different universe structures onto an ml_type



Future work

▶ Regarding ML_universe as a Tarski universe

τ : ml_type

coq_type τ : Type
suggests further extension of our approach

by means of induction-recursion [Dybjer and Setzer, 2003],
especially to GADTs

▶ More library for structures between integer types
Z SInt63

UInt63

∼=

UInt62 SInt63 Z

UInt63 N
as unital rings as ordered sets

▶ let rec f x = ...

▶ CoqGen can translate let rec with a fuel parameter
▶ no equational theory about the fuel in Monae yet
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