Environment-friendly monadic equational reasoning for OCaml

Reynald Affeldt Jacques Garrigue Takafumi Saikawa

ITP 2023, Białystok
Outline

Overview

COQ semantics of OCAML types

Monadic Semantics of OCAML Programs

Examples

Conclusions
Goal: We want to do equational reasoning on OCAML programs

Approach: reuse\(^1\) the output of \textsc{CoqGen} (OCAML \rightarrow COQ)

\[\text{\textsc{CoqGen} encapsulates effects into a monad; we therefore want to use monadic equational reasoning} \]

we want to keep OCAML programs executable in COQ

Contributions:

\[\text{equational theory to reason about OCAML programs} \]
\[\text{verification library (design interface + lemmas)} \]
\[\text{concrete, COQ-executable examples} \]

\(^1\)thus environment-friendly...
This work relies on the following components:

- **SSReflect**
 - In particular, its rewriting tactic and the `under` tactical
- **MONAE** [Affeldt et al., 2019]
 - Hierarchy of monad interfaces + models + applications
 - Which relies on **HIERARCHY-BUILDER** [Cohen et al., 2020]
- **COQGEN** [Garrigue and Saikawa, 2022]
 - `ocamlc -c -coq`
 - Monadic shallow embedding of **OCAML** programs into **COQ**
Soundness by translation [Garrigue and Saikawa, 2022]

For function $P : \tau \rightarrow \tau'$ and input $x : \tau$

- P translates to $[P]$, and $\vdash [P] : [\tau \rightarrow \tau']$
- x translates to $[x]$, and $\vdash [x] : [\tau]$
- run $[P][x]$ in Coq to check
 1. it evaluates to $[P(x)]$
 2. it is typed as $\vdash [P(x)] : [\tau']$
Soundness by translation [Garrigue and Saikawa, 2022]

For function $P : \tau \rightarrow \tau'$ and input $x : \tau$

- P translates to $[P]$, and $\triangleright \vdash [P] : [\tau \rightarrow \tau']$
- x translates to $[x]$, and $\triangleright \vdash [x] : [\tau]$
- run $[P][x]$ in Coq to check
 1. it evaluates to $[P(x)]$
 2. it is typed as $\vdash [P(x)] : [\tau']$

Executability is a design principle of CoqGen
Example: translation of a pure function

OCAML (pure.ml)

```ocaml
let discriminant a b c = b * b - 4 * a * c
```

\[\downarrow \quad \texttt{ocamlc -c -coq} \]

CoQ

```coq
Definition discriminant (a b c : coq_type ml_int) :
    coq_type ml_int :=
    PrimInt63.sub (PrimInt63.mul b b)
    (PrimInt63.mul (PrimInt63.mul 4%int63 a) c).
```

- **ml_int** is a deep-embedding of the **OCAML** type **int** and
 (coq_type **ml_int**) is its interpretation in **CoQ**.
Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions
Translation of types

<table>
<thead>
<tr>
<th>OCAML</th>
<th>CoQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(primitive)</td>
<td>Inductive ml_type :=</td>
</tr>
<tr>
<td>int, bool, ...</td>
<td></td>
</tr>
<tr>
<td>(function)</td>
<td></td>
</tr>
<tr>
<td>$t_{0} \rightarrow t_{1}$</td>
<td></td>
</tr>
<tr>
<td>(reference)</td>
<td></td>
</tr>
</tbody>
</table>
| t ref | Variant loc (ml_type:Type) (locT:eqType) :
| (user-defined) | ml_type -> Type :=
| type 'a rlist = | mkloc T : locT -> loc locT T. |
| | | Inductive rlist (a : Type) (a_1 : ml_type) :=
| | | Nil |
| | | Cons : a -> loc (ml_rlist a_1) -> rlist a a_1. |

▶ **ml_type** is a deep-embedding of the syntax of OCAML types
▶ **loc** and **rlist** are auxiliary types for the semantics
Translation of types – interpretation

Reminder

Variant loc (ml_type:Type) (locT:eqType)
 : ml_type -> Type :=
 mkloc T : locT -> loc locT T.

Inductive rlist (a : Type) (a_1 : ml_type) :=
 | Nil
 | Cons : a -> loc (ml_rlist a_1) -> rlist a a_1.

Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=
 match T with
 | ml_int => int
 | ml_bool => bool
 | ml_unit => unit
 | ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)
 | ml_ref T1 => loc T1
 | ml_rlist T1 => rlist (coq_type63 T1) T1
 end.

▶ References need both the syntax and interpretation of a type
▶ Functions may have effects (M at the codomain)
Packing syntactic and semantic types

\begin{verbatim}
HB.mixin Structure isML_universe (ml_type : Type) := {
 eqclass : Equality.class_of ml_type ;
 coq_type : forall M : Type -> Type, ml_type -> Type ;
 ml_nonempty : ml_type ;
 val_nonempty : forall M, coq_type M ml_nonempty }.
\end{verbatim}

▶ we use \texttt{Hierarchy-Builder} to combine the syntax and interpretation \(\implies\) an “ML_universe”.

▶ additional \texttt{ml_nonempty} and \texttt{val_nonempty} assures the existence of at least one nonempty type
Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions
Typed store monad - a global monad for OCAML

The M in

```coq
Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=
  match T with
  | ml_int => int
  | ml_bool => bool
  | ml_unit => unit
  | ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)
  | ml_ref T1 => loc T1
  | ml_rlist T1 => rlist (coq_type63 T1) T1
end.
```

needs to handle all OCAML effects

- mutable values (references)
- failures
- exceptions, etc.

We define the “typed store monad” to model the first two.
Defining a monad with **Monae**

We rely on **Monae** to handle definitions about monads:

- define the interface (operators and theory) of a monad to write equational proofs on programs
- prove and define instances of the interface to see the consistency and properties of the interface

These definitions are systematically organized using **Hierarchy-Builder**.
The typed store monad

- In the *interface* part, the typed store monad inherits the basic monad interface that has only `bind` and `ret`, adding four operators (`cnew`, `cget`, `cput`, `crun`) and several equations.

- In the *model* part, we give executable definitions of operators and prove the equations for them.

For example, here is the interface and model of `cget`:

(in hierarchy.v)

```coq
forall {T}, loc locT T -> M (coq_type M T);
```

(in typed_store_model.v)

```coq
let cget T (r : loc T) : M (coq_type T) :=
  fun st =>
    if nth_error (ofEnv st) (loc_id r) is Some (mkbind T' v)
    then
      if coerc T v is Some u then inr (u, st) else inl tt
    else inl tt.
```

- `coerce` is a boolean function that compares a type `T : ml_type` with the type of some value `v : coq_type M T'`.
Dynamic type checking: \texttt{coerce}

\begin{verbatim}
Definition coerce (T1 T2 : X) (v : f T1) : option (f T2) :=
 if @eqPc _ T1 T2 is ReflectT H then Some (eq_rect _ _ v _ H) else None.

Definition cget T (r : loc T) : M (coq_type M T) :=
 fun st =>
 if nth_error st (loc_id r) is Some (mkbind T' v) then
 if coerce T v is Some u then Ret (u, st) else fail
 else fail.
\end{verbatim}

\begin{itemize}
 \item \texttt{coerce} assures that an access to the store is correctly typed
 \hspace{1cm} \implies \textbf{the dynamically} typed store monad
 \item dynamic type checking needs dynamic type comparison
 \hspace{1cm} \implies \textbf{the syntactic} types are necessary
\end{itemize}
Combining things into a model

\[MA := Env \rightarrow (1 + Env \times A) \]

Section predef.
Variable ml_type : ML_universe. (* has a canonical coq_type *)

Record binding (M : Type -> Type) :=
 mkbind { bind_type : ml_type; bind_val : coq_type M bind_type }.
Arguments mkbind {M bind_type}.

Definition M0 Env (T : UU0) := MS Env option_monad T.
(* transformer MS provides the monad interface *)
End predef.

#\[\text{bypass_check(positivity)}\]
Inductive Env (ml_type : ML_universe) :=
 mkEnv : seq (binding ml_type (M0 (Env _))) -> Env _.
(* entangle the monad and environment *)

Section def.
Variable ml_type : ML_universe.
Definition M (Env ml_type) (T : UU0) := MS Env option_monad T.
End def.
Equations of the Typed Store Monad

Equations are basic reasoning tools that relates the operators of the monad

Sample relation between \(c\text{get} \) and \(c\text{new} \):

\[
c\text{get} \text{newD} : \\
\quad \forall T, T' (r : \text{loc } T) (s : \text{coq_type } M T') A \\
\quad (k : \text{loc } T' \to \text{coq_type } M T \to \text{coq_type } M T \to M A), \\
\quad \text{cget } r \gg (\text{fun } u \Rightarrow \text{cnew } s \gg (\text{fun } r' \Rightarrow \text{cget } r \gg k r' u)) = \\
\quad \text{cget } r \gg (\text{fun } u \Rightarrow \text{cnew } s \gg (\text{fun } r' \Rightarrow k r' u u))
\]

▶ Direct paraphrase: the \(c\text{new} \) operator does not change the meaning of \(c\text{get} \)

▶ Intuition: this equation expresses the “freshness” of locations

Not that in practice, we rather use a “derived” equation:

Lemma \(\text{cchknewget } T, T' (r : \text{loc } T) s (A : UU0) k : \\
\quad \text{cchk } r \gg (\text{cnew } T' s \gg \text{fun } r' \Rightarrow \text{cget } r \gg k r') = \\
\quad \text{cget } r \gg (\text{fun } u \Rightarrow \text{cnew } T' s \gg k \sim u) :> M A. \)
Outline

Overview

\textsc{Coq} semantics of \textsc{Ocaml} types

Monadic Semantics of \textsc{Ocaml} Programs

Examples

Conclusions
fibonacci

Fixpoint fibo_ref n (a b : loc ml_int) : M unit :=
 if n is n.+1 then
 cget a >>= (fun x => cget b >>= fun y => cput a y >> cput b (x + y))
 >> fibo_ref n a b
 else skip.

Fixpoint fibo_rec n :=
 if n is m.+1 then
 if m is k.+1 then fibo_rec k + fibo_rec m else 1
 else 1.

Theorem fibo_ref_ok n :
 crun (cnew ml_int 1 >>=
 (fun a => cnew ml_int 1 >>= fun b => fibo_ref n a b >> cget a))
 = Some (fibo_rec n).
factorial on \texttt{Int63}

\begin{verbatim}
Definition fact_for63 (n : coq_type ml_int) : M (coq_type ml_int) :=
 do v <- cnew ml_int 1\%int63;
 do _ <-
 (do u <- Ret 1\%int63;
 do v_1 <- Ret n;
 forloop63 u v_1
 (fun i =>
 do v_1 <- (do v_1 <- cget v; Ret (mul v_1 i));
 cput v v_1));
 cget v.

Theorem fact_for63_ok :
 crun (fact_for63 (N2int n)) = Some (N2int (fact_rec n)).
\end{verbatim}
Definition cycle (T : ml_type) (a b : coq_type T) : M (coq_type (ml_rlist T)) :=
 do r <- cnew (ml_rlist T) (Nil (coq_type T) T);
 do l <-
 (do v <- cnew (ml_rlist T) (Cons (coq_type T) T b r);
 Ret (Cons (coq_type T) T a v));
 do _ <- cput r l; Ret l.

Definition hd (T : ml_type) (def : coq_type T) (param : coq_type (ml_rlist T)) : coq_type T :=
 match param with | Nil => def | Cons a _ => a end.

Lemma hd_is_true :
 crun
 (do l <- cycle ml_bool true false; Ret (hd ml_bool false l))
 = Some true.
Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions
Construction of the typed store monad

Monad interface = (type of) operators + equations

A model consists in
 ▶ an implementation of the operators
 ▶ proofs that the equations are valid

In our work, a model has two purposes:
 1. validate the equations
 2. be executable

Two models:
 ▶ monad_model.v: does not require axioms
 ▶ typed_store_model.v: requires bypass of positivity check

Technical note: monad transformers from Monae help writing the model of the typed store monad while keeping proofs “readable” (can be displayed in a small screen and principled)
Comparison with the ST monad

The ST monad [Launchbury and Jones, 1994, Sect. 2.2] has similarly typed operations as our typed store monad:

- **ST monad:** \(\text{runST} : \forall a, (\forall s, \text{ST } s \ a) \rightarrow a \)
- **Ours:** \(\text{crun} : \forall a, \text{M } A \rightarrow \text{option } a \)

The universal parameter \(s \) to \(\text{ST} \) is used to distinguish different levels of \(\text{runST}'s \); \(\text{STRef} \) is also similar to \(\text{loc} \):

- **ST monad:** \(\text{newST} : \forall a, a \rightarrow \text{ST } s \ (\text{STRef } s \ a) \)
- **Ours:** \(\text{cnew} : \forall a, \text{coq_type } a \rightarrow \text{M } \text{(loc } a) \)
Uses of HB

- extend the hierarchy without mistakes (declarations of coercions and canonical instances are error-prone)
- flexibly combine existing monads and transformers to build models
- parametrize models by various ML universes, attaching different universe structures onto an ml_type
Future work

- Regarding \texttt{ML_universe} as a Tarski universe
 \[
 \tau : \text{ml_type} \quad \text{coq_type} \quad \tau : \text{Type}
 \]
 suggests further extension of our approach by means of induction-recursion [Dybjer and Setzer, 2003], especially to GADTs

- More library for structures between integer types

 \[
 \begin{array}{ccc}
 \mathbb{Z} & \rightarrow & \text{SInt63} \\
 & \uparrow & \downarrow \mathbb{R} \\
 & \rightarrow & \text{UInt63} \\
 \text{UInt62} & \leftarrow & \rightarrow \text{SInt63} & \rightarrow \mathbb{Z} \\
 & \downarrow & \rightarrow \text{UInt63} & \rightarrow \mathbb{N} \\
 \end{array}
 \]
 as unital rings as ordered sets

- \texttt{let rec f x = ...}

 - \texttt{COQ_GEN} can translate \texttt{let rec} with a fuel parameter
 - no equational theory about the fuel in \texttt{MONAE} yet
A hierarchy of monadic effects for program verification using equational reasoning.
In *MPC 2019*.

Hierarchy Builder: Algebraic hierarchies made easy in Coq with Elpi (system description).

Induction–recursion and initial algebras.

Validating OCaml soundness by translation into Coq.
In *TYPES 2022*.

Lazy functional state threads.
In *the ACM SIGPLAN'94 Conference on Programming Language Design and Implementation (PLDI), Orlando, Florida, USA, June 20–24, 1994*, pages 24–35. ACM.