
Environment-friendly monadic equational
reasoning for OCaml

Reynald Affeldt Jacques Garrigue Takafumi Saikawa

ITP 2023, Bia lystok

Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions

This presentation

▶ Goal: We want to do equational reasoning on OCaml
programs

▶ Approach: reuse1 the output of CoqGen (OCaml → Coq)
▶ CoqGen encapsulates effects into a monad;

we therefore want to use monadic equational reasoning
▶ we want to keep OCaml programs executable in Coq

▶ Contributions:
▶ equational theory to reason about OCaml programs
▶ verification library (design interface + lemmas)
▶ concrete, Coq-executable examples

1thus environment-friendly...

Building on previous work

This work relies on the following components:
▶ SSReflect

▶ In particular, its rewriting tactic and the under tactical

▶ Monae [Affeldt et al., 2019]
▶ Hierarchy of monad interfaces + models + applications
▶ Which relies on Hierarchy-Builder [Cohen et al., 2020]

▶ CoqGen [Garrigue and Saikawa, 2022]
▶ ocamlc -c -coq
▶ monadic shallow embedding of OCaml programs into Coq

Soundness by translation [Garrigue and Saikawa, 2022]

P

x

OCaml Coq

[[x]]

[[P]]

P (x) [[P]][[x]]

Input

Program

Output

For function P : τ → τ ′ and
input x : τ

▶ P translates to [[P]], and
⊢ [[P]] : [[τ → τ ′]]

▶ x translates to [[x]], and
⊢ [[x]] : [[τ]]

▶ run [[P]][[x]] in Coq to
check

1. it evaluates to [[P (x)]]
2. it is typed as

⊢ [[P (x)]] : [[τ ′]]

Executability is a design principle
of CoqGen

Soundness by translation [Garrigue and Saikawa, 2022]

P

x

OCaml Coq

[[x]]

[[P]]

P (x) [[P]][[x]]

Input

Program

Output

For function P : τ → τ ′ and
input x : τ

▶ P translates to [[P]], and
⊢ [[P]] : [[τ → τ ′]]

▶ x translates to [[x]], and
⊢ [[x]] : [[τ]]

▶ run [[P]][[x]] in Coq to
check

1. it evaluates to [[P (x)]]
2. it is typed as

⊢ [[P (x)]] : [[τ ′]]

Executability is a design principle
of CoqGen

Example: translation of a pure function

OCaml (pure.ml)

let discriminant a b c = b * b - 4 * a * c

⇓ ocamlc -c -coq

Coq

Definition discriminant (a b c : coq_type ml int)

: coq_type ml_int :=

PrimInt63.sub (PrimInt63.mul b b)

(PrimInt63.mul (PrimInt63.mul 4%int63 a) c).

▶ ml int is a deep-embedding of the OCaml type int and
(coq type ml int) is its interpretation in Coq.

Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions

Translation of types
OCaml Coq

(primitive)

int, bool, ...
(function)

t0 → t1

(reference)

t ref

(user-defined)

type 'a rlist =

| Nil

| Cons of

'a * 'a rlist ref

Inductive ml_type :=

| ml_int | ml_bool | ...

| ml_arrow : ml_type -> ml_type -> ml_type

| ml_ref : ml_type -> ml_type

| ml_rlist : ml_type -> ml_type.

Variant loc (ml_type:Type) (locT:eqType)

: ml_type -> Type :=

mkloc T : locT -> loc locT T.

Inductive rlist (a : Type) (a_1 : ml_type) :=

| Nil

| Cons : a -> loc (ml_rlist a_1) -> rlist a a_1.

▶ ml_type is a deep-embedding of the syntax of OCaml types

▶ loc and rlist are auxiliary types for the semantics

Translation of types – interpretation
reminder� �

Variant loc (ml_type:Type) (locT:eqType)

: ml_type -> Type :=

mkloc T : locT -> loc locT T.

Inductive rlist (a : Type) (a_1 : ml_type) :=

| Nil

| Cons : a -> loc (ml_rlist a_1) -> rlist a a_1.� �
Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=

match T with

| ml_int => int

| ml_bool => bool

| ml_unit => unit

| ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)

| ml_ref T1 => loc T1

| ml_rlist T1 => rlist (coq_type63 T1) T1

end.

▶ References need both the syntax and interpretaion of a type

▶ Functions may have effects (M at the codomain)

Packing syntactic and semantic types

HB.mixin Structure isML_universe (ml_type : Type) := {

eqclass : Equality.class_of ml_type ;

coq_type : forall M : Type -> Type, ml_type -> Type ;

ml_nonempty : ml_type ;

val_nonempty : forall M, coq_type M ml_nonempty }.

▶ we use Hierarchy-Builder to combine the syntax and
interpretation =⇒ an “ML_universe”.

▶ additional ml_nonempty and val_nonempty assures the
existence of at least one nonempty type

Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions

Typed store monad - a global monad for OCaml

The M in
Fixpoint coq_type63 (M : Type -> Type) (T : ml_type) : Type :=

match T with

| ml_int => int

| ml_bool => bool

| ml_unit => unit

| ml_arrow T1 T2 => coq_type63 T1 -> M (coq_type63 T2)

| ml_ref T1 => loc T1

| ml_rlist T1 => rlist (coq_type63 T1) T1

end.

needs to handle all OCaml effects

▶ mutable values (references)

▶ failures

▶ exceptions, etc.

We define the “typed store monad” to model the first two.

Defining a monad with Monae

We rely on Monae to handle definitions about monads:

▶ define the interface (operators and theory) of a monad
to write equational proofs on programs

▶ prove and define instances of the interface
to see the consistency and properties of the interface

These definitions are systematically organized using
Hierarchy-Builder.

The typed store monad

▶ In the interface part, the typed store monad inherits the basic
monad interface that has only bind and ret, adding four
operators (cnew, cget, cput, crun) and several equations

▶ In the model part, we give executable definitions of operators
and prove the equations for them.

For example, here is the interface and model of cget:
(in hierarchy.v)
cget : forall {T}, loc locT T -> M (coq_type M T) ;

(in typed_store_model.v)
Let cget T (r : loc T) : M (coq_type T) :=

fun st =>

if nth_error (ofEnv st) (loc_id r) is Some (mkbind T' v) then

if coerce T v is Some u then inr (u, st) else inl tt

else inl tt.

▶ coerce is a boolean function that compares a type
T : ml_type with the type of some value v : coq_type M T'

Dynamic type checking: coerce

Definition coerce (T1 T2 : X) (v : f T1) : option (f T2) :=

if @eqPc _ T1 T2 is ReflectT H then Some (eq_rect _ _ v _ H) else None.

Definition cget T (r : loc T) : M (coq_type M T) :=

fun st =>

if nth_error st (loc_id r) is Some (mkbind T' v) then

if coerce T v is Some u then Ret (u, st) else fail

else fail.

▶ coerce assures that an access to the store is correctly typed
=⇒ the dynamically typed store monad

▶ dynamic type checking needs dynamic type comparison
=⇒ the syntactic types are necessary

Combining things into a model

MA := Env → (1 + Env ×A)

Section predef.

Variable ml_type : ML_universe. (* has a canonical coq_type *)

Record binding (M : Type -> Type) :=

mkbind { bind_type : ml_type; bind_val : coq_type M bind_type }.

Arguments mkbind {M bind_type}.

Definition M0 Env (T : UU0) := MS Env option_monad T.

(* transformer MS provides the monad interface *)

End predef.

#[bypass_check(positivity)]

Inductive Env (ml_type : ML_universe) :=

mkEnv : seq (binding ml_type (M0 (Env _))) -> Env _.

(* entangle the monad and environment *)

Section def.

Variable ml_type : ML_universe.

Definition M (Env ml_type) (T : UU0) := MS Env option_monad T.

End def.

Equations of the Typed Store Monad

Equations are basic reasoning tools that relates the operators of
the monad
Sample relation between cget and cnew:
cgetnewD :

forall T T' (r : loc locT T) (s : coq_type M T') A

(k : loc locT T' -> coq_type M T -> coq_type M T -> M A),

cget r >>= (fun u => cnew s >>= (fun r' => cget r >>= k r' u)) =

cget r >>= (fun u => cnew s >>= (fun r' => k r' u u))

▶ Direct paraphrase: the cnew operator does not change the
meaning of cget

▶ Intuition: this equation expresses the “freshness” of locations

Not that in practice, we rather use a “derived” equation:
Lemma cchknewget T T' (r : loc T) s (A : UU0) k :

cchk r >> (cnew T' s >>= fun r' => cget r >>= k r') =

cget r >>= (fun u => cnew T' s >>= k ^~ u) :> M A.

Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions

fibonacci

Fixpoint fibo_ref n (a b : loc ml_int) : M unit :=

if n is n.+1 then

cget a >>= (fun x => cget b >>= fun y => cput a y >> cput b (x + y))

>> fibo_ref n a b

else skip.

Fixpoint fibo_rec n :=

if n is m.+1 then

if m is k.+1 then fibo_rec k + fibo_rec m else 1

else 1.

Theorem fibo_ref_ok n :

crun (cnew ml_int 1 >>=

(fun a => cnew ml_int 1 >>= fun b => fibo_ref n a b >> cget a))

= Some (fibo_rec n).

factorial on Int63

Definition fact_for63 (n : coq_type ml_int) : M (coq_type ml_int) :=

do v <- cnew ml_int 1%int63;

do _ <-

(do u <- Ret 1%int63;

do v_1 <- Ret n;

forloop63 u v_1

(fun i =>

do v_1 <- (do v_1 <- cget v; Ret (mul v_1 i));

cput v v_1));

cget v.

Theorem fact_for63_ok :

crun (fact_for63 (N2int n)) = Some (N2int (fact_rec n)).

cyclic graph

Definition cycle (T : ml_type) (a b : coq_type T)

: M (coq_type (ml_rlist T)) :=

do r <- cnew (ml_rlist T) (Nil (coq_type T) T);

do l <-

(do v <- cnew (ml_rlist T) (Cons (coq_type T) T b r);

Ret (Cons (coq_type T) T a v));

do _ <- cput r l; Ret l.

Definition hd (T : ml_type) (def : coq_type T)

(param : coq_type (ml_rlist T)) : coq_type T :=

match param with | Nil => def | Cons a _ => a end.

Lemma hd_is_true :

crun

(do l <- cycle ml_bool true false; Ret (hd ml_bool false l))

= Some true.

Outline

Overview

Coq semantics of OCaml types

Monadic Semantics of OCaml Programs

Examples

Conclusions

Construction of the typed store monad

Monad interface = (type of) operators + equations

A model consists in

▶ an implementation of the operators

▶ proofs that the equations are valid

In our work, a model has two purposes:

1. validate the equations

2. be executable

Two models:

▶ monad_model.v: does not require axioms

▶ typed_store_model.v: requires bypass of positivity check

Technical note: monad transformers from Monae help writing the

model of the typed store monad while keeping proofs “readable” (can be

displayed in a small screen and principled)

Comparison with the ST monad

The ST monad [Launchbury and Jones, 1994, Sect. 2.2] has
similarly typed operations as our typed store monad:

▶ ST monad: runST : forall a, (forall s, ST s a) -> a

▶ Ours: crun : forall a, M A -> option a

the universal parameter s to ST is used to distinguish different
levels of runST’s; STRef is also similar to loc:

▶ ST monad: newST : forall a, a -> ST s (STRef s a)

▶ Ours: cnew : forall a, coq_type a -> M (loc a)

Uses of HB

▶ extend the hierarchy without mistakes (declarations of
coercions and canonical instances are error-prone)

▶ flexibly combine existing monads and transformers to build
models

▶ parametrize models by various ML universes, attaching
different universe structures onto an ml_type

Future work

▶ Regarding ML_universe as a Tarski universe

τ : ml_type

coq_type τ : Type
suggests further extension of our approach

by means of induction-recursion [Dybjer and Setzer, 2003],
especially to GADTs

▶ More library for structures between integer types
Z SInt63

UInt63

∼=

UInt62 SInt63 Z

UInt63 N
as unital rings as ordered sets

▶ let rec f x = ...

▶ CoqGen can translate let rec with a fuel parameter
▶ no equational theory about the fuel in Monae yet

Affeldt, R., Nowak, D., and Saikawa, T. (2019).

A hierarchy of monadic effects for program verification using equational reasoning.
In MPC 2019.
https://github.com/affeldt-aist/monae.

Cohen, C., Sakaguchi, K., and Tassi, E. (2020).

Hierarchy Builder: Algebraic hierarchies made easy in Coq with Elpi (system description).
In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020), June
29–July 6, 2020, Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 34:1–34:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik.

Dybjer, P. and Setzer, A. (2003).

Induction–recursion and initial algebras.
Annals of Pure and Applied Logic, 124(1):1–47.

Garrigue, J. and Saikawa, T. (2022).

Validating OCaml soundness by translation into Coq.
In TYPES 2022.

Launchbury, J. and Jones, S. L. P. (1994).

Lazy functional state threads.
In the ACM SIGPLAN’94 Conference on Programming Language Design and Implementation (PLDI),
Orlando, Florida, USA, June 20–24, 1994, pages 24–35. ACM.

https://github.com/affeldt-aist/monae

	Overview
	Coq semantics of OCaml types
	Monadic Semantics of OCaml Programs
	Examples
	Conclusions

