
1

Efficient, Extensional, and Generic Finite Maps in Coq-std++

Robbert Krebbers

Radboud University Nijmegen, The Netherlands

July 31, 2023 @ Coq Workshop, Bia lystok, Poland

2

Finite maps

Finite map / dictionary: Functions K → option V with finite support

Naive representation: Association lists

Definition map K V := list (K * V)

Example: K:=string and V:=nat

[(‘coq‘, 1989), (‘lean‘, 2013), (‘automath‘, 1967)]

3

Applications in programming languages

Keys Values
Heap (in high-level language) Locations Values
Heap (in machine language) Addresses Bytes
Function body Labels Statements
Typing context Variables Types
Sets over A A Unit

4

Wishlist

1. Efficient operations:
▶ Logarithmic lookup/insert/delete, linear union/intersection
▶ When extracted to OCaml and with vm compute in Coq

2. Extensional equality (no setoids):

m1 = m2 iff ∀k .m1(k) = m2(k)

Definitional extensional equality:
If m1 and m2 ground and (∀k.m1(k) = m2(k)), then eq refl : m1 = m2

3. Generic in the type of keys

4. Usable in nested inductive definitions:

Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → map var val → val.

4

Wishlist

1. Efficient operations:
▶ Logarithmic lookup/insert/delete, linear union/intersection
▶ When extracted to OCaml and with vm compute in Coq

2. Extensional equality (no setoids):

m1 = m2 iff ∀k .m1(k) = m2(k)

Definitional extensional equality:
If m1 and m2 ground and (∀k.m1(k) = m2(k)), then eq refl : m1 = m2

3. Generic in the type of keys

4. Usable in nested inductive definitions:

Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → map var val → val.

4

Wishlist

1. Efficient operations:
▶ Logarithmic lookup/insert/delete, linear union/intersection
▶ When extracted to OCaml and with vm compute in Coq

2. Extensional equality (no setoids):

m1 = m2 iff ∀k .m1(k) = m2(k)

Definitional extensional equality:
If m1 and m2 ground and (∀k.m1(k) = m2(k)), then eq refl : m1 = m2

3. Generic in the type of keys

4. Usable in nested inductive definitions:

Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → map var val → val.

4

Wishlist

1. Efficient operations:
▶ Logarithmic lookup/insert/delete, linear union/intersection
▶ When extracted to OCaml and with vm compute in Coq

2. Extensional equality (no setoids):

m1 = m2 iff ∀k .m1(k) = m2(k)

Definitional extensional equality:
If m1 and m2 ground and (∀k.m1(k) = m2(k)), then eq refl : m1 = m2

3. Generic in the type of keys

4. Usable in nested inductive definitions:

Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → map var val → val.

4

Wishlist

1. Efficient operations:
▶ Logarithmic lookup/insert/delete, linear union/intersection
▶ When extracted to OCaml and with vm compute in Coq

2. Extensional equality (no setoids):

m1 = m2 iff ∀k .m1(k) = m2(k)

Definitional extensional equality:
If m1 and m2 ground and (∀k.m1(k) = m2(k)), then eq refl : m1 = m2

3. Generic in the type of keys

4. Usable in nested inductive definitions:

Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → map var val → val.

5

6

Let us take a look at standard map representations

7

Comparison of map implementations

(continued)

assoc list

AVL old gmap App/Ler new gmap math-comp

Efficient #

 #

Extensional #

G# G#

Generic

 #

Nested induction

This work

8

Problems with association lists

Inefficient: lookup/insert/delete are linear, union/intersection are quadratic

Extensionality fails: Order and duplicates matter

[(‘coq‘, 1989), (‘lean‘, 2013), (‘automath‘, 1967)]

̸= [(‘automath‘, 1967), (‘coq‘, 1989), (‘lean‘, 2013)]

Possible workarounds for extensionality:

▶ Use quotient type: Coq does not have those

▶ Use Σ type:

Definition map K V := { l : list (K * V) | sorted by key l }

Breaks ‘definitional extensional equality’ (proofs are relevant) and ‘usable in
nested inductive definitions’ (map K V not positive in V)

8

Problems with association lists

Inefficient: lookup/insert/delete are linear, union/intersection are quadratic

Extensionality fails: Order and duplicates matter

[(‘coq‘, 1989), (‘lean‘, 2013), (‘automath‘, 1967)]

̸= [(‘automath‘, 1967), (‘coq‘, 1989), (‘lean‘, 2013)]

Possible workarounds for extensionality:

▶ Use quotient type: Coq does not have those

▶ Use Σ type:

Definition map K V := { l : list (K * V) | sorted by key l }

Breaks ‘definitional extensional equality’ (proofs are relevant) and ‘usable in
nested inductive definitions’ (map K V not positive in V)

8

Problems with association lists

Inefficient: lookup/insert/delete are linear, union/intersection are quadratic

Extensionality fails: Order and duplicates matter

[(‘coq‘, 1989), (‘lean‘, 2013), (‘automath‘, 1967)]

̸= [(‘automath‘, 1967), (‘coq‘, 1989), (‘lean‘, 2013)]

Possible workarounds for extensionality:

▶ Use quotient type: Coq does not have those

▶ Use Σ type:

Definition map K V := { l : list (K * V) | sorted by key l }

Breaks ‘definitional extensional equality’ (proofs are relevant) and ‘usable in
nested inductive definitions’ (map K V not positive in V)

9

Comparison of map implementations (continued)

assoc list AVL

old gmap App/Ler new gmap math-comp

Efficient #

 #

Extensional # #

G# G#

Generic

 #

Nested induction #

This work

10

The standard efficient map representations

(AVL, Red-Black, BTree) do not enjoy extensionality

due to lack of quotient types in Coq

Need canonical representations

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

11

Binary tries [First version in Coq in CompCert, Leroy 2006]

1

a
2

b
4 5

c
10

d
11

3

e
7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Inductive positive :=

| xH : positive

| xI : positive → positive

| xO : positive → positive.

Example: Lookup for 10, in positive representation xO (xI (xO xH))

12

Extensionality for binary tries

1

a

2

b

4

3

e

7

1

a

2

b

4 5

3

e

7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Empty node invariant: A node can only be None if both subtrees are non-empty

12

Extensionality for binary tries

1

a

2

b

4

3

e

7

1

a

2

b

4 5

3

e

7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Empty node invariant: A node can only be None if both subtrees are non-empty

12

Extensionality for binary tries

1

a

2

b

4

3

e

7

1

a

2

b

4 5

3

e

7

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Empty node invariant: A node can only be None if both subtrees are non-empty

13

Generic keys [std++ 2012, inspired by ssreflect’s countType]

Generalize from positive to any K with Countable K:

Class Countable K ’{EqDecision K} := {

encode : K → positive;

decode : positive → option K;

decode encode x : decode (encode x) = Some x

}

Examples:

true 1

false 2

inl a xO (encode a)

inr b xI (encode b)

(a,b) a0 (b0 .. (an (bn xH)))

where a0 .. (an xH) = encode a

and b0 .. (bn xH) = encode b

13

Generic keys [std++ 2012, inspired by ssreflect’s countType]

Generalize from positive to any K with Countable K:

Class Countable K ’{EqDecision K} := {

encode : K → positive;

decode : positive → option K;

decode encode x : decode (encode x) = Some x

}

Examples:

true 1

false 2

inl a xO (encode a)

inr b xI (encode b)

(a,b) a0 (b0 .. (an (bn xH)))

where a0 .. (an xH) = encode a

and b0 .. (bn xH) = encode b

14

Extensionality for generic tries

Let K := bool and encode b := if b then 1 else 2

1

a

2

1

a

2

b

3

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Valid key invariant: A node is only Some if its key q is a valid code, i.e.,

encode <$> decode q = Some q

14

Extensionality for generic tries

Let K := bool and encode b := if b then 1 else 2

1

a

2

1

a

2

b

3

Inductive trie A :=

| Leaf : trie A

| Node : trie A →
option A →
trie A →
trie A

Valid key invariant: A node is only Some if its key q is a valid code, i.e.,

encode <$> decode q = Some q

15

Extensional generic tries using Σ type [std++ 2012–2022]

Inductive Pmap (A : Type) := PMap {

pmap car : trie A;

pmap prf : Pmap wf pmap car (* Non-empty node invariant *)

}.

Record gmap (K : Type) ‘{Countable K} (A : Type) := GMap {

gmap car : Pmap A;

gmap prf : gmap wf K gmap car (* Valid key invariant *)

}.

16

Comparison of map implementations (continued)

assoc list AVL old gmap

App/Ler new gmap math-comp

Efficient #

 #

Extensional # # G#

 G#

Generic

Nested induction # #

This work

17

Be aware of Σ types!

18

Problems with Σ types in Coq

Inductive Pmap (A : Type) := PMap {

pmap car : trie A;

pmap prf : Pmap wf pmap car (* Non-empty node invariant *)

}.

1. To avoid computation of proofs, inhabitants of Pmap wf need to opaque
This destroys definitional extensional equality

Lemma foo : delete 10 {[10:=12]} =@{Pmap Z} ∅
Proof. Fail reflexivity. (* Unable to unify "delete 10 .." with "∅". *) Qed.

2. They destroy positivity checking in nested inductive definitions

Fail Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → Pmap val → val.

(* Non strictly positive occurrence of "val" in ".. → Pmap val → ..". *)

18

Problems with Σ types in Coq

Inductive Pmap (A : Type) := PMap {

pmap car : trie A;

pmap prf : Pmap wf pmap car (* Non-empty node invariant *)

}.

1. To avoid computation of proofs, inhabitants of Pmap wf need to opaque
This destroys definitional extensional equality

Lemma foo : delete 10 {[10:=12]} =@{Pmap Z} ∅
Proof. Fail reflexivity. (* Unable to unify "delete 10 .." with "∅". *) Qed.

2. They destroy positivity checking in nested inductive definitions

Fail Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → Pmap val → val.

(* Non strictly positive occurrence of "val" in ".. → Pmap val → ..". *)

18

Problems with Σ types in Coq

Inductive Pmap (A : Type) := PMap {

pmap car : trie A;

pmap prf : Pmap wf pmap car (* Non-empty node invariant *)

}.

1. To avoid computation of proofs, inhabitants of Pmap wf need to opaque
This destroys definitional extensional equality

Lemma foo : delete 10 {[10:=12]} =@{Pmap Z} ∅
Proof. Fail reflexivity. (* Unable to unify "delete 10 .." with "∅". *) Qed.

2. They destroy positivity checking in nested inductive definitions

Fail Inductive val :=

| VInt : Z → val

| VPair : val → val → val

| VClosure : var → expr → Pmap val → val.

(* Non strictly positive occurrence of "val" in ".. → Pmap val → ..". *)

19

Inspiration for this work

Journal of Automated Reasoning (2023) 67:8
https://doi.org/10.1007/s10817-022-09655-x

Efficient Extensional Binary Tries

Andrew W. Appel1 · Xavier Leroy2

Received: 10 October 2021 / Accepted: 3 October 2022 / Published online: 12 January 2023
© The Author(s), under exclusive licence to Springer Nature B.V. 2023

Abstract
Lookup tables (finite maps) are a ubiquitous data structure. In pure functional languages they
are best represented using trees instead of hash tables. In pure functional languages within
constructive logic,without a primitive integer type, they arewell represented using binary tries
instead of search trees. In this work, we introduce canonical binary tries, an improved binary-
trie data structure that enjoys a natural extensionality property, quite useful in proofs, and
supports sparsenessmore efficiently.Weprovide full proofs of correctness inCoq.Weprovide
microbenchmark measurements of canonical binary tries versus several other data structures
for finite maps, in a variety of application contexts; as well as measurement of canonical
versus original tries in two big, real systems. The application context of data structures
contained in theorem statements imposes unusual requirements for which canonical tries are
particularly well suited.

Keywords Verified data structures · Program proof · VST · CompCert · Coq

1 Introduction

Lookup tables—finite maps from identifiers to bindings—are a central data structure in many
kinds of programs. We are particularly interested in programs that are proved correct—
compilers, static analyzers, program verifiers. Those programs are often written in pure
functional languages, since the proof theory of functional programming ismore tractable than
those of imperative or object-oriented languages. Thuswe focus on applicationswritten in the
functional languages internal to the logics of Coq or HOL. Such programsmay be “extracted”
to programming languages such as OCaml, Standard ML, or Haskell, and compiled with
optimizing compilers for those languages; the CompCert C compiler [13] and the Verasco
static analyzer [11] are examples. On the other hand, some programs, such as the Verified

B Xavier Leroy
xavier.leroy@college-de-france.fr

Andrew W. Appel
appel@princeton.edu

1 Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540,
USA

2 Collège de France, PSL University, 3 rue d’Ulm, Paris 75005, France

123

20

Comparison of map implementations (continued)

assoc list AVL old gmap App/Ler

new gmap math-comp

Efficient #

 #

Extensional # # G#

 G#

Generic #

Nested induction # #

This work

21

Extensional tries without Σ type [Appel/Leroy, 2023]

Key idea: Enumerate all valid shapes of nodes as constructors
⇒ ensures non-empty node invariant by construction

Inductive ne trie (A : Type) :=

| Node001 : ne trie A → ne trie A (* only a right subtree *)

| Node010 : A → ne trie A (* only a middle value *)

| Node011 : A → ne trie A → ne trie A (* only middle and right *)

| Node100 : ne trie A → ne trie A (* only a left subtree *)

| Node101 : ne trie A → ne trie A → ne trie A (* left, right, no middle *)

| Node110 : ne trie A → A → ne trie A (* only left and middle *)

| Node111 : ne trie A → A → ne trie A → ne trie A. (* left, middle, right *)

Inductive trie (A : Type) :=

| Empty : trie A

| Nodes : ne trie A → trie A.

22

Comparison of map implementations (continued)

assoc list AVL old gmap App/Ler new gmap

math-comp

Efficient #

#

Extensional # # G#

G#

Generic #

Nested induction # #

This work

23

Challenge for supporting generic keys

Key challenge: Define valid key invariant without Σ type around the whole tree
Solution: Dependent/indexed types

▶ Ensure that all the operations and proofs can be done without pain
⇒ Use the ‘right’ definition, smart constructor, case analysis, induction principle

▶ Extraction to OCaml should give the Appel/Leroy definition
⇒ Put index of dependent type in Prop

24

The data structure

Inductive gmap dep ne (A : Type) (P : positive → Prop) :=

...

The index P : positive → Prop expresses if the key is valid

▶ At the top level P q := encode <$> decode q = Some q

▶ Propagate in tree using:

Notation "P ∼ 0" := (λ p, P (xO p)) : function scope.

Notation "P ∼ 1" := (λ p, P (xI p)) : function scope.

▶ Since P has sort Prop it is erased by extraction

25

Full definition of the data structure

Inductive gmap dep ne (A : Type) (P : positive → Prop) :=

| GNode001 : gmap dep ne A P∼1 → gmap dep ne A P

| GNode010 : P 1 → A → gmap dep ne A P

| GNode011 : P 1 → A → gmap dep ne A P∼1 → gmap dep ne A P

| GNode100 : gmap dep ne A P∼0 → gmap dep ne A P

| GNode101 : gmap dep ne A P∼0 → gmap dep ne A P∼1 → gmap dep ne A P

| GNode110 : gmap dep ne A P∼0 → P 1 → A → gmap dep ne A P

| GNode111 : gmap dep ne A P∼0 → P 1 → A → gmap dep ne A P∼1 → gmap dep ne A P.

Variant gmap dep (A : Type) (P : positive → Prop) :=

| GEmpty : gmap dep A P

| GNodes : gmap dep ne A P → gmap dep A P.

(* Wrapped in a Record to avoid evaluation of encode/decode *)

Record gmap key K ‘{Countable K} (q : positive) :=

GMapKey { : encode (A:=K) <$> decode q = Some q }.

Record gmap K ‘{Countable K} A :=

GMap { gmap car : gmap dep A (gmap key K) }.

25

Full definition of the data structure

Inductive gmap dep ne (A : Type) (P : positive → Prop) :=

| GNode001 : gmap dep ne A P∼1 → gmap dep ne A P

| GNode010 : P 1 → A → gmap dep ne A P

| GNode011 : P 1 → A → gmap dep ne A P∼1 → gmap dep ne A P

| GNode100 : gmap dep ne A P∼0 → gmap dep ne A P

| GNode101 : gmap dep ne A P∼0 → gmap dep ne A P∼1 → gmap dep ne A P

| GNode110 : gmap dep ne A P∼0 → P 1 → A → gmap dep ne A P

| GNode111 : gmap dep ne A P∼0 → P 1 → A → gmap dep ne A P∼1 → gmap dep ne A P.

Variant gmap dep (A : Type) (P : positive → Prop) :=

| GEmpty : gmap dep A P

| GNodes : gmap dep ne A P → gmap dep A P.

(* Wrapped in a Record to avoid evaluation of encode/decode *)

Record gmap key K ‘{Countable K} (q : positive) :=

GMapKey { : encode (A:=K) <$> decode q = Some q }.

Record gmap K ‘{Countable K} A :=

GMap { gmap car : gmap dep A (gmap key K) }.

26

Implementation of lookup

Definition gmap dep ne lookup {A} : ∀ {P}, positive → gmap dep ne A P → option A :=

fix go {P} i t {struct t} :=

match t, i with

| (GNode010 x|GNode011 x |GNode110 x|GNode111 x), 1 => Some x

| (GNode100 l|GNode110 l |GNode101 l |GNode111 l), i∼0 => go i l

| (GNode001 r|GNode011 r|GNode101 r|GNode111 r), i∼1 => go i r

| , => None

end.

Take away: Dependent pattern matching ‘just’ works

26

Implementation of lookup

Definition gmap dep ne lookup {A} : ∀ {P}, positive → gmap dep ne A P → option A :=

fix go {P} i t {struct t} :=

match t, i with

| (GNode010 x|GNode011 x |GNode110 x|GNode111 x), 1 => Some x

| (GNode100 l|GNode110 l |GNode101 l |GNode111 l), i∼0 => go i l

| (GNode001 r|GNode011 r|GNode101 r|GNode111 r), i∼1 => go i r

| , => None

end.

Take away: Dependent pattern matching ‘just’ works

27

Handling many cases

Problem: To implement operations such as union you get 72 = 49 cases

Inspired by Appel/Leroy we provide:

▶ Smart constructor

GNode : gmap dep A P∼0 →
option (P 1 * A) →
gmap dep A P∼1 → gmap dep A P

▶ Case analysis

gmap dep ne case : gmap dep ne A P →
(gmap dep A P∼0 → option (P 1 * A) → gmap dep A P∼1 → B) →
B

▶ Induction principle

27

Handling many cases

Problem: To implement operations such as union you get 72 = 49 cases

Inspired by Appel/Leroy we provide:

▶ Smart constructor

GNode : gmap dep A P∼0 →
option (P 1 * A) →
gmap dep A P∼1 → gmap dep A P

▶ Case analysis

gmap dep ne case : gmap dep ne A P →
(gmap dep A P∼0 → option (P 1 * A) → gmap dep A P∼1 → B) →
B

▶ Induction principle

27

Handling many cases

Problem: To implement operations such as union you get 72 = 49 cases

Inspired by Appel/Leroy we provide:

▶ Smart constructor

GNode : gmap dep A P∼0 →
option (P 1 * A) →
gmap dep A P∼1 → gmap dep A P

▶ Case analysis

gmap dep ne case : gmap dep ne A P →
(gmap dep A P∼0 → option (P 1 * A) → gmap dep A P∼1 → B) →
B

▶ Induction principle

27

Handling many cases

Problem: To implement operations such as union you get 72 = 49 cases

Inspired by Appel/Leroy we provide:

▶ Smart constructor

GNode : gmap dep A P∼0 →
option (P 1 * A) →
gmap dep A P∼1 → gmap dep A P

▶ Case analysis

gmap dep ne case : gmap dep ne A P →
(gmap dep A P∼0 → option (P 1 * A) → gmap dep A P∼1 → B) →
B

▶ Induction principle

27

Handling many cases

Problem: To implement operations such as union you get 72 = 49 cases

Inspired by Appel/Leroy we provide:

▶ Smart constructor

GNode : gmap dep A P∼0 →
option (P 1 * A) →
gmap dep A P∼1 → gmap dep A P

▶ Case analysis

gmap dep ne case : gmap dep ne A P →
(gmap dep A P∼0 → option (P 1 * A) → gmap dep A P∼1 → B) →
B

▶ Induction principle

28

Result: The entire std++ FinMap interface

can be implemented and verified in 503 LOC

(including imports and some comments)

No need for eq rect or axioms

28

Result: The entire std++ FinMap interface

can be implemented and verified in 503 LOC

(including imports and some comments)

No need for eq rect or axioms

29

Comparison of map implementations (continued)

assoc list AVL old gmap App/Ler new gmap math-comp
Efficient # #
Extensional # # G# G#
Generic #
Nested induction # #

This work

30

Comparison with finmaps in math-comp

Structure finSet (K : choiceType) : Type := mkFinSet {

enum fset :> seq K;

: canonical keys enum fset

}.

Record finMap (K : choiceType) (V : Type) : Type := FinMap {

domf : {fset K};

ffun of fmap :> {ffun domf -> V}

}.

Sets as lists, coding using nat, so not very efficient

 Finite functions {ffun ..} have been defined so that nested induction works, see
https://github.com/math-comp/math-comp/pull/294

G# No definitional extensional equality due to Σ type in finSet

https://github.com/math-comp/math-comp/pull/294

30

Comparison with finmaps in math-comp

Structure finSet (K : choiceType) : Type := mkFinSet {

enum fset :> seq K;

: canonical keys enum fset

}.

Record finMap (K : choiceType) (V : Type) : Type := FinMap {

domf : {fset K};

ffun of fmap :> {ffun domf -> V}

}.

Sets as lists, coding using nat, so not very efficient

 Finite functions {ffun ..} have been defined so that nested induction works, see
https://github.com/math-comp/math-comp/pull/294

G# No definitional extensional equality due to Σ type in finSet

https://github.com/math-comp/math-comp/pull/294

31

Future work

▶ Definitional extensionality would work with Σ type in SProp

▶ Challenge: SProp is not very well integrated in Coq’s stdlib
▶ Use in nested inductives still a problem

▶ What if future versions of Coq have quotients (or HITs)
▶ Opens door for more map implementations: AVL, RedBlack, etc.
▶ Extensionality will be no problem
▶ Use in nested inductives is unclear, what about positivity restrictions on

quotients/HITs

▶ Proper benchmarking
▶ Appel and Leroy have benchmarks for lookup/insert
▶ For those, Appel/Leroy are factor 1.5-5 faster

(conjecture of problem: our insert is not native, but defined in terms of
partial alter : (option A → option A) → K → gmap K A → gmap K A)

▶ Need good benchmarks for other map operations (e.g., union)

31

Future work

▶ Definitional extensionality would work with Σ type in SProp

▶ Challenge: SProp is not very well integrated in Coq’s stdlib
▶ Use in nested inductives still a problem

▶ What if future versions of Coq have quotients (or HITs)
▶ Opens door for more map implementations: AVL, RedBlack, etc.
▶ Extensionality will be no problem
▶ Use in nested inductives is unclear, what about positivity restrictions on

quotients/HITs

▶ Proper benchmarking
▶ Appel and Leroy have benchmarks for lookup/insert
▶ For those, Appel/Leroy are factor 1.5-5 faster

(conjecture of problem: our insert is not native, but defined in terms of
partial alter : (option A → option A) → K → gmap K A → gmap K A)

▶ Need good benchmarks for other map operations (e.g., union)

31

Future work

▶ Definitional extensionality would work with Σ type in SProp

▶ Challenge: SProp is not very well integrated in Coq’s stdlib
▶ Use in nested inductives still a problem

▶ What if future versions of Coq have quotients (or HITs)
▶ Opens door for more map implementations: AVL, RedBlack, etc.
▶ Extensionality will be no problem
▶ Use in nested inductives is unclear, what about positivity restrictions on

quotients/HITs

▶ Proper benchmarking
▶ Appel and Leroy have benchmarks for lookup/insert
▶ For those, Appel/Leroy are factor 1.5-5 faster

(conjecture of problem: our insert is not native, but defined in terms of
partial alter : (option A → option A) → K → gmap K A → gmap K A)

▶ Need good benchmarks for other map operations (e.g., union)

32

Advertisement: Other features of std++

▶ Type classes for operator and property overloading

▶ Type classes for properties of types (decidable, finite, countable, infinite, . . .)

▶ Theory and derived operations on maps

▶ Theory and operations on lists

▶ Sets, finite sets, finite multisets

▶ Tactics: naive solver, set solver, multiset solver

https://gitlab.mpi-sws.org/iris/stdpp

https://gitlab.mpi-sws.org/iris/stdpp

