
VLSM: A General Coq Framework for Reasoning
About Faulty Distributed Systems

Vlad Zamfir1,2, Denisa Diaconescu2,3, Wojciech Kolowski2,
Brandon Moore2, Karl Palmskog2,4, Traian Florin Serbanuta2,3,

Ioan Teodorescu3

1Ethereum Foundation 2Runtime Verification, Inc.
3University of Bucharest 4KTH Royal Institute of Technology

https://github.com/runtimeverification/vlsm

https://github.com/runtimeverification/vlsm

Context: Message-Passing Distributed Systems

stateful components communicate (only) by sending messages

messages (usually) delivered over a network

asynchronous: no firm upper bound on message delivery time

Many application areas:

state machine replication (key-value stores)

scientific computing

blockchains and cryptocurrencies

1 / 32

Faults in Distributed Systems

Distributed systems can go wrong in many ways:

messages arriving out-of-order

component crashes (with recovery?)

messages getting corrupted or lost

components misbehaving (adversarially?)

Several techniques can be used to address faults:

stable component storage and state checkpointing

component redundancy

cryptographic message signatures

trusted hardware

2 / 32

Message Passing Distributed Systems in Coq

attractive application area due to high risk of errors

executable code small in size compared to theory

many tricky environmental assumptions

Examples from the literature:

Verdi, PLDI’15/CPP’16, applied to Raft protocol, crash
fault-tolerant state-machine replication

Chapar, POPL’18, causally consistent key-value store

Velisarios, ESOP’18, applied to PBFT protocol, Byzantine
fault-tolerant state-machine replication

Disel, POPL’18, applied to 2PC protocol

Aneris, ESOP’20, applied to load balancing and 2PC protocol

3 / 32

VLSM Overview

a Coq framework for modeling and reasoning about distributed
systems subject to faults, building on a (pen-and-paper) theory
of Validating Labeled State transition and Message production
systems

a single VLSM can represent a local component view

global system view comes from composing multiple VLSMs and
lifting the local “validity constraint” of each component

framework focuses on modeling distributed systems subject to
equivocation rather than Byzantine faults

4 / 32

VLSM Definition

A VLSM is a tuple V = (L,S ,S0,M,M0, τ, β), such that

● L is a set of labels for transitions

● S is a non-empty set of states

● S0 ⊆ S is a non-empty set of initial states

● M is set of messages

● M0 ⊆M is a set of initial messages

● τ ∶ L × S ×M?→ S ×M? is a transition function

● β ⊆ L × S ×M? is a predicate filtering the inputs for the
transition function

where M? =M ∪ { } and stands for “no message”.

5 / 32

VLSM Coq Encoding

Record VLSMType (message : Type) : Type :=
{ state : Type; label : Type; }.

Record VLSMMachine {message : Type} (T : VLSMType message) : Type := {
initial_state_prop : state T → Prop;
initial_state : Type := {s : state T | initial_state_prop s};
s0 : Inhabited initial_state;
initial_message_prop : message → Prop;
initial_message : Type := {m : message | initial_message_prop m};
transition : label T → state T ∗ option message →
state T ∗ option message;
valid : label T → state T ∗ option message → Prop;
}.

Record VLSM (message : Type) : Type := mk_vlsm

{ vtype :> VLSMType message; vmachine :> VLSMMachine vtype; }.

6 / 32

Rationale for Coq Definition

Record VLSM (message : Type) : Type := mk_vlsm

{ vtype :> VLSMType message; vmachine :> VLSMMachine vtype; }.

Q1: why parameterize the VLSM Coq definition over a message type?

A1: we often need to consider VLSMs over the same set of messages

Q2: why split the VLSM Coq definition into a “VLSM type” and a
“VLSM machine”?

A2: we often need to consider VLSMs over the same labels/states

7 / 32

Free Composition of VLSMs

Let {Vi}ni=1 be an indexed set of VLSMs over a set of messages M.
The free composition of {Vi}ni=1 is ∑n

i=1 Vi = (L,S ,S0,M,M0, τ, β)
● L = ⋃n

i=1{i} × Li is the disjoint union of labels

● S =∏n
i=1 Si is the product of states

● S0 =∏n
i=1 Si ,0 is the product of initial states

● M is the same set of messages as for each Vi
● M0 = ⋃n

i=1Mi ,0 is the union of all initial messages

● τ ∶ L × S ×M?→ S ×M? is defined component-wise using labels,

τ(⟨j , lj⟩, ⟨s1, .. .sn⟩,m) =
(⟨s1, .. ., sj−1, τ sj (lj , sj ,m), sj+1, .. .sn⟩, τmj (lj , sj ,m))

● β ⊆ L × S ×M? is defined component-wise using labels,

β(⟨j , lj⟩, ⟨s1, .. ., sn⟩,m) = βj(lj , sj ,m)
8 / 32

VLSM Composition Constraints

A composition constraint φ is a predicate additionally filtering the
inputs for the composed transition function, i.e.,

φ ⊆ L × S ×M?

The constrained VLSM composition under φ of {Vi}ni=1 is the
VLSM which has the same components as the free composition,
except for the validate predicate which is further constrained by φ

(
n

∑
i=1
Vi)∣

φ
= (L,S ,S0,M,M0, τ, β ∩ φ)

The constrained VLSM composition might have fewer valid
states/messages than the free VLSM composition.

9 / 32

VLSM Composition in Coq

in Coq, we allow the composition of an indexed set of VLSMs
IM : index -> VLSM message, where index has decidable
equality

the state of a composite VLSM becomes a dependent product,
yielding a particular state from the corresponding component
for each index

the label type is a dependent sum pairing an index with a label
from the corresponding component

Definition composite_state : Type := ∀ n : index, vstate (IM n).
Definition composite_label : Type := sigT (fun n ⇒ vlabel (IM n)).

10 / 32

The Parity VLSM Example

our framework tutorial begins with the parity VLSM P
parity is the property of integers of being even or odd

P stores a tuple and continually decrements one of the tuple’s
elements while a constraint is checked at each transition step

https://github.com/runtimeverification/vlsm/blob/

master/theories/VLSM/Core/Examples/Parity.v

11 / 32

https://github.com/runtimeverification/vlsm/blob/master/theories/VLSM/Core/Examples/Parity.v
https://github.com/runtimeverification/vlsm/blob/master/theories/VLSM/Core/Examples/Parity.v

Parity VLSM Definition

Let P be the following VLSM:

● L = {d}, an arbitrary singleton set

● S = {⟨n, i⟩ ∣ n, i ∈ Z}
● S0 = {⟨n,n⟩ ∣ n ≥ 0}
● M = Z
● M0 = {2}
● for any integers n, i , and j , there is a transition

⟨n, i⟩ dÐÐ→
j → 2j

⟨n, i − j⟩

● the validity constraint predicate is defined as

β = {(d , ⟨n, i⟩, j) ∣ i ≥ j ≥ 1}

12 / 32

Parity VLSM Transitions and Traces

P transition example:

⟨5,4⟩ dÐÐ→
10 → 20

⟨5,−6⟩.

P valid trace example:

⟨8,8⟩ dÔÔÔ⇒
4 → 8

⟨8,4⟩ dÔÔÔ⇒
2 → 4

⟨8,2⟩ dÔÔÔ⇒
2 → 4

⟨8,0⟩

P valid trace example:

⟨5,5⟩ dÔÔÔ⇒
2 → 4

⟨5,3⟩ dÔÔÔ⇒
2 → 4

⟨5,1⟩ dÐÐÐ→
1 → 2

⟨5,0⟩

13 / 32

Parity VLSM Properties

Lemma

m ∈MP ∖ { } iff m = 2p, where p ≥ 1.

“valid non-empty messages are always a positive power of two”

Theorem

⟨n, i⟩ ∈ SP iff n ≥ i ≥ 0, where n and i have the same parity.

“integers in valid states are non-negative with the first greater
than or equal to the second, and are either both even or both odd”

14 / 32

Parity VLSM Coq Encoding (Using Std++)

Definition ParityLabel : Type := unit.
Definition ParityState : Type := Z ∗ Z.
Definition ParityMessage : Type := Z.

Definition ParityType : VLSMType ParityMessage :=
{| state := ParityState; label := ParityLabel; |}.

Definition ParityComponent_initial_state_prop (st : ParityState) :=
st.1 >= 0 ∧ st.1 = st.2.

Definition ParityComponent_transition

(l : ParityLabel) (s : ParityState) (om : option ParityMessage)
: ParityState ∗ option ParityMessage :=
match om with

| Some j ⇒ ((s.1, s.2 − j), Some (2 ∗ j))
| None ⇒ (s, None)
end.

15 / 32

Parity VLSM Coq Encoding, Continued

Definition ParityComponentValid (l : ParityLabel) (st : ParityState)
(om : option ParityMessage) : Prop :=
match om with

| Some msg ⇒ msg <= st.2 ∧ 1 <= msg

| None ⇒ False

end.

Definition ParityComponent_initial_state_type : Type :=
{st : ParityState | ParityComponent_initial_state_prop st}.

Program Definition ParityComponent_initial_state :
ParityComponent_initial_state_type := exist _ (0, 0) _.

Next Obligation.
Proof. done. Defined.

16 / 32

Parity VLSM Coq Encoding, Continued

Instance ParityComponent_Inhabited_initial_state_type :
Inhabited (ParityComponent_initial_state_type) :=
populate (ParityComponent_initial_state).

Definition ParityMachine : VLSMMachine ParityType :=
{|
initial_state_prop := ParityComponent_initial_state_prop;
initial_message_prop := fun (ms : ParityMessage) ⇒ ms = 2;
s0 := ParityComponent_Inhabited_initial_state_type;
transition := fun l ’(st, om) ⇒ ParityComponent_transition l st om;
valid := fun l ’(st, om) ⇒ ParityComponentValid l st om;
|}.

Definition ParityVLSM : VLSM ParityMessage :=
{| vtype := ParityType; vmachine := ParityMachine; |}.

17 / 32

Parity VLSM Coq Encoding, Continued

Lemma

m ∈MP ∖ { } iff m = 2p, where p ≥ 1.

Lemma parity_valid_messages_powers_of_2 :
∀ (om : option ParityMessage), om <> None →
((option_valid_message_prop ParityVLSM om) ↔
(∃ p : Z, p >= 1 ∧ om = Some (2 ˆ p))).

Proof. (* ... *) Qed.

Theorem

⟨n, i⟩ ∈ SP iff n ≥ i ≥ 0, where n and i have the same parity.

Theorem parity_valid_states_same_parity :
∀ (s : ParityState),
valid_state_prop ParityVLSM s ↔
((Z.Even s.2 ↔ Z.Even s.1) ∧ s.1 >= s.2 ∧ s.2 >= 0).

Proof. (* ... *) Qed.
18 / 32

VLSMs and Equivocation

equivocation refers to claiming different beliefs about the state
of the protocol to different parts of the system in order to steer
the protocol-following components into making inconsistent
decisions

an equivocating component may claim a bit is 0 to one part of
the system, and 1 to the other

an equivocating component behaves as if running multiple
copies of the protocol

for VLSMs, equivocation fault tolerance analysis takes place of
Byzantine fault tolerance analysis

19 / 32

Equivocation-Limited Message Observer (ELMO) Protocols

ELMO is a VLSM that checks message validity, ensures that
the component does not self-equivocate, and allows receiving a
message only if this will not bring the total weight of
locally-visible equivocating components above a fixed
equivocation threshold
an ELMO protocol is a constrained composition of ELMO
components which ensures that the global equivocation
exhibited by the system remains below a fixed threshold
we say that ELMO components are “validating” for the
composition with a limited amount of global equivocation

Inductive Label : Type := Receive | Send.
Inductive State : Type :=
MkState { obs : list Observation; adr : Address; }
with Observation : Type :=
MkObservation { label : Label; message : Message; }
with Message : Type := MkMessage { state : State; }.

20 / 32

Reduction of Byzantine Behavior to Equivocation

We can model Byzantine behavior for a VLSM M by considering all
the valid traces it can produce when being freely composed with an
arbitrary VLSM:

Definition byzantine_trace_prop (tr : vTrace M) :=
∃ (M’ : VLSM message) (Proj := binary_free_composition_fst M M’),
valid_trace_prop Proj tr.

21 / 32

Reduction of Byzantine Behavior to Equivocation

When M is instantiated with a constrained composition of VLSMs
whose every component is able to validate whether received
messages can be validly produced by the constrained composition,
we are able to resist exposure to arbitrary Byzantine behavior:

Lemma composite_validator_byzantine_traces_are_not_byzantine

{message : Type} ‘{EqDecision index} (IM : index → VLSM message)
(constraint : composite_label IM →
composite_state IM ∗ option message → Prop)

(X := composite_vlsm IM constraint)
(Hvalidator : ∀ i : index,
component_message_validator_prop IM constraint i) :
∀ (tr : vTrace X), byzantine_trace_prop X tr →
valid_trace_prop X tr.

22 / 32

Library Module Overview

Supporting LibrariesVLSM

VLSM Relations

Composition
Projection to a

Single Component

Sub-compositionsValidator

Equivocation & Oracles

Message Dependencies

Models of Equivocation

23 / 32

Current Framework Coq Code Statistics

Whole Project

Spec LOC: 19605, Proof LOC: 22242, Comment LOC: 3919

Support Library

Spec LOC: 3331, Proof LOC: 4203, Comment LOC: 359

VLSM Library and Applications

Spec LOC: 16274, Proof LOC: 18039, Comment LOC: 3560

24 / 32

Usage of Coq’s Stdlib

earlier, VLSM framework only used Stdlib, partly due to
dependency aversion

Stdlib has many useful typeclasses, but not Decision

this led to ad-hoc conversions between bool and Prop

also problematic ad-hoc use of automation tactics (auto,
intuition)

25 / 32

Embracing Typeclasses via Std++

MathComp/SSReflect not an option due to heavy typeclass use

Std++ allowed to purge many bool uses through Decision

Std++ provided SSReflect-like finishers

typeclass hierarchy shallow enough to use unbundled typeclasses

fewer problems with divergence when consistently using
typeclass Hint Mode

26 / 32

Itauto as Replacement for Intuition Tactic

“intuition.” used to mean “intuition auto with *.”

“tauto.” means “intuition fail.”

unclear when we get propositional solving or not

we adopted the Itauto plugin and itauto tactic as replacement
for intution/tauto (and auto)

congruence and lia are popular leaf tactics

Itauto now part of the Coq Platform

due to advice from Itauto developer, we stay away from smt

tactic (Nelson-Oppen combinations)

27 / 32

Axiom Management

we use functional extensionality and sometimes classical logic

recent problem: itauto pulling in classic via NNPP
whenever Classical Prop module is required

solved by separating itauto and ctauto (also upstream)

make validate is not precise enough for good axiom analysis,
see Coq issue #17345

28 / 32

Reasoning on VLSM Traces

VLSM traces can be finite or infinite ...

... but is this typically known up front?

ongoing investigation of encoding of possibly-infinite LTS traces

assume finiteness and infiniteness precisely when needed

positive vs. negative coinduction: do we care about subject
reduction?

need better automation for coinduction, currently
experimenting with coinduction by Damien Pous

more LTL-like machinery for temporal reasoning would be nice

29 / 32

Positive vs. Negative Finiteness

Set Primitive Projections.
Variant traceF (trace : Type) : Type :=
| TnilF (a : A) | TconsF (a : A) (b : B) (tr : trace).
CoInductive trace : Type := go { _observe : traceF trace }.
Notation trace’ := (traceF trace).
Definition observe (tr : trace) : trace’ :=
_observe tr.
Inductive finite’ : trace’ → Prop :=
| Fin_Tnil : ∀ a, finite’ (TnilF a)
| Fin_Tcons : ∀ (a : A) (b : B) tr,

finite’ (observe tr) → finite’ (TconsF a b tr).
Definition finite : trace → Prop := fun tr ⇒ finite’ (observe tr).

30 / 32

Development Practices

continuous integration based on Docker-Coq with two latest
released Coq versions

at least one approving review required to merge a pull request

coding conventions: a mix of Std++ and Stdlib, enforced
during review

pull requests with focused changes more quickly approved

31 / 32

Conclusion

Project status:

continuously developed on GitHub:
https://github.com/runtimeverification/vlsm

open source under the BSD-3-Clause license

releases available on Coq’s opam archive (coq-vlsm)

pen-and-paper theory described in arXiv paper linked on GitHub

Ongoing work:

additional examples and extensive VLSM tutorial

additional consensus related applications

32 / 32

https://github.com/runtimeverification/vlsm

	Introduction
	VLSM Framework
	Parity VLSM and Other Examples
	VLSM Coq Library
	Proof Engineering Experience
	Future Work and Conclusion

