
Efficient, Extensional, and Generic Finite Maps in Coq-std++

Robbert Krebbers

Radboud University Nijmegen, The Netherlands
mail@robbertkrebbers.nl

Abstract

Finite maps are omnipresent in the formalization of programming languages in proof assistants. In
this talk, I will present the gmap (“generic” map) implementation of finite maps in the Coq-std++
library. This implementation has recently been improved, and enjoys a number of interesting features.
First, gmap is efficient—operations such as lookup/insert/delete have logarithmic time complexity, and
union/intersection have linear time complexity. Second, gmap is extensional—maps are equal iff they are
point-wise equal (without axioms). Third, gmap is generic in the type of keys. Fourth, gmap can be used
in nested recursive definitions. The implementation of gmap is based on the “canonical” version of binary
tries by Appel and Leroy, but generalized to become generic in the type of keys.

1 Introduction

A finite map with keys K and values A is a function f : K → optionA whose domain dom f is finite. Finite
maps are widely used in the formalization of programming contexts—to represent heaps that map locations
to values, typing contexts that map variables to types, or function bodies that map labels to statements. By
taking A to be the unit type, one obtains finite sets, a similarly ubiquitous data structure.

Naively one could represent finite maps as association lists, e.g., [(2, a), (11, d)]. In a proof assistant
based on intentional type theory (without quotient types) such Coq, this approach allows for different
representations of the same map. For example, the above map can also be represented as [(11, d), (2, a)].
Hence this naive representation does not satisfy the extensionality property, m1 = m2 iff ∀k.m1(k) = m2(k).
The lack of this property is a serious problem in large proof developments—one needs to reason up to setoid
equality, and prove that all functions (including those defined by clients of the map library) respect setoid
equality. The extensionality property is not satisfied by efficient map implementations such as AVL trees,
Red-Black trees, B-trees either. It is therefore important to have a finite map representation that satisfies
extensionality, is efficient, and generic in the keys.

2 Binary Tries

Appel and Leroy [1] show that binary tries are suitable for an efficient and extensional implementation of
finite maps with positive keys. An example of a binary trie is (keys in red):
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Since positive numbers in Coq are represented in binary, the basic map operations can be implemented by
following the bit sequence. For example, 10 is represented as xO (xI (xO xH)). Starting at the root, one goes
left/right/left to arrive at the value c of 10. Coq-std++ extends Leroy and Appel’s work by making binary
tries generic in the types of keys K using a type class to turn a key into a positive (i.e., bit sequence):

Class Countable K ‘{EqDecision K} := {

encode : K → positive;

decode : positive → option K;

decode_encode x : decode (encode x) = Some x

}.



(Coq-std++ provides Countable instances for the usual data types, such as numbers, sums, products, and
lists. Inspired by ssreflect, Coq-std++ provides a gen_tree type to make it easy to define Countable instances
for custom Inductive definitions.)

To implement the basic finite map operations on generic tries, we encode the key as a positive, and
follow the bit sequence in the trie as described above.

To obtain the extensionality property (m1 = m2 iff ∀k.m1(k) = m2(k)) we need to ensure that tries are
in canonical representation. Canonicity involves two key properties. First, there should be no subtrees with
just empty nodes at the bottom. Second, every positive in the trie should be the result of encode. The old
version of Coq-std++ used a Sigma-type to ensure that every trie is in canonical representation, but this
approach has several problems (see Section 3). The new version uses the following representation:

Inductive gmap_dep_ne (A : Type) (P : positive → Prop) :=

| GNode001 : gmap_dep_ne A (λ p, P p~1) → gmap_dep_ne A P

| GNode010 : P 1 → A → gmap_dep_ne A P

| GNode011 : P 1 → A → gmap_dep_ne A (λ p, P p~1) → gmap_dep_ne A P

| GNode100 : gmap_dep_ne A (λ p, P p~0) → gmap_dep_ne A P

| GNode101 : gmap_dep_ne A (λ p, P p~0) → gmap_dep_ne A (λ p, P p~1) → gmap_dep_ne A P

| GNode110 : gmap_dep_ne A (λ p, P p~0) → P 1 → A → gmap_dep_ne A P

| GNode111 : gmap_dep_ne A (λ p, P p~0) → P 1 → A → gmap_dep_ne A (λ p, P p~1) → gmap_dep_ne A P.

Inductive gmap_dep (A : Type) (P : positive → Prop) :=

| GEmpty : gmap_dep A P

| GNodes : gmap_dep_ne A P → gmap_dep A P.

Record gmap_key K ‘{Countable K} (q : positive) :=

GMapKey { _ : encode (A:=K) <$> decode q = Some q }.

Record gmap K ‘{Countable K} A := GMap { gmap_car : gmap_dep A (gmap_key K) }.

Following Appel and Leroy [1] we define types for non-empty tries gmap_dep_ne and tries that might be
empty gmap_dep. The constructors of gmap_dep_ne make sure that one cannot have subtrees with just empty
nodes—namely, a node is only allowed to have no value if it has a non-empty child to the left or right.

Our new ingredient is the use of the predicate P : positive → Prop, which says that the key is “a valid
encoding”. At the top level (in the definition of gmap) we let P be gmap_key K, and in the constructors of
gmap_dep_ne we make sure that P matches up with the position in the trie. Our representation is surprisingly
easy to use. We can implement the operations for lookup, insert/delete/alter, mapping, merging, and folding
without getting into any issues regarding dependent types.

3 Key Features

Up to our knowledge, Coq-std++’s gmap has a unique set of features that is not provided by any other Coq
library for finite maps with generic keys. Most importantly:

• The extracted code is similar to handwritten code without dependent types because P is a Prop-based
predicate and thus erased.

• Computation with vm_compute is efficient, and all equalities on closed maps hold definitionally. In the
old Sigma-based version of Coq-std++ this was not the case because proofs were accumulated.

• Our maps can be used in nested recursive definitions, for example:

Inductive gtest K ‘{Countable K} :=

| GTest : gmap K (gtest K) → gtest K.

With the old Sigma-type based definition Coq rejected this definition: the use of gmap K (gtest K)

violates Coq’s strict positivity condition. With our new definition these nested recursive definitions
are accepted. One can nest things even further: gtest K is countable, allowing one to use gtest as keys
in maps, e.g., gmap (gtest K) A or gtest (gtest K).



4 Coq Sources

The coq-std++ Gitlab can be found at https://gitlab.mpi-sws.org/iris/stdpp. The new gmap imple-
mentation can be at https://gitlab.mpi-sws.org/iris/stdpp/-/blob/master/stdpp/gmap.v. It is an
instance of the FinMap type class, and to gmap one should always use the operations and theory of FinMap.
The file https://gitlab.mpi-sws.org/iris/stdpp/-/blob/master/stdpp/fin_maps.v provides derived
operations and lemmas for all implementations of FinMap.
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