
HenBlocks:
Structured Editing for Coq

Coq Workshop 2022

Bernard Boey
Supervisor: Michael D. Adams

1 of 26

Contents
● Background

○ Coq Proof Assistant
○ Structured Editing

■ Scratch
■ Hazel

○ Existing Approaches to Coq Interfaces
● Objective
● Solution: HenBlocks
● Discussion

○ Findings
○ Limitations
○ Future Work

2 of 26

Background

3 of 26

Background - Coq Proof Assistant

4 of 26

Background - Mathematical Logic in Coq

5 of 26

Background - Functional Programming and Proving in Coq

6 of 26

Background - Pain Points of Coq
1. Type system complex and difficult to understand (Robert 2018)
2. Difficulty in learning new specification & tactic languages (Böhne & Kreitz 2018)
3. Friction in user experience (Robert 2018)

These 4 error messages are all due to the same kind of syntax error: missing a period (full stop) after a command/tactic.

7 of 26

Background - Structured Editing
Manipulation of underlying text content in a syntax-directed manner.

Hello, World!

Structured Representation Underlying HTML

<p>Hello, World!</p>

Hello, World! <p>Hello, World!</p>
8 of 26

Background - Structured Editing
Varies in scope and scale

Text Editors with
Some Structured
Editing Support

Plain Text Editors Fully-Fledged
Structured Editors

Windows Notepad JetBrains IDEs (e.g.
IntelliJ IDEA, PyCharm)

Other IDEs (e.g. Emacs,
VSCode)

WYSIWYG Editors
(What You See Is What You Get)

(e.g. PowerPoint, Wix)

Scratch, Hazel

9 of 26

Background - Structured Editing - Scratch

10 of 26

Background - Structured Editing - Hazel

11 of 26

Background - Existing Approaches to Coq Interfaces
Prooftree, Proof-by-pointing, Actema, PeaCoq, Chick

Some unrelated to Coq
(separate custom system)

Some intended for
advanced users

Some old and no longer
maintained

12 of 26

Objective
● To explore the use of structured editing in writing Coq proofs by building an

interactive GUI, and evaluate whether it can help alleviate the pain points

13 of 26

Solution

14 of 26

Solution - Methods
Text editor with structured editing support vs fully-fledged structured editor

Desktop app vs online web app

Backend Coq API: jsCoq

Frontend library: Blockly

15 of 26

Solution - HenBlocks
Target audience: Undergrad students with experience in functional programming
but little/no experience in proving

Use case: Learn, discover, and practise proving, and eventually transition to
writing textual proofs with text editors

Available at https://henblocks.github.io (desktop only)

16 of 26

https://henblocks.github.io

Toolbox Workspace Code Goals

17 of 26

Advanced Features
● Variable Dropdowns
● Automatic Renaming of Variables
● Automatic Slots for Subgoals

18 of 26

HenBlocks Architecture Diagram

19 of 26

Variable Dropdowns Diagram

20 of 26

Discussion

21 of 26

Discussion - Findings
● Existing interfaces for Coq have drawbacks
● Existing (non-Coq) fully-fledged structured editors do not go far enough
● We can go further than removing syntax errors by reducing semantic errors

○ HenBlocks attempts to resolve the limitations, and alleviate the pain points
● We have to make compromises and simplifications to achieve a flatter

learning curve

22 of 26

Discussion - Limitations

Slower than typingPotential for visual clutter Limited vocabulary

23 of 26

Discussion - Future Work

Development

Parsing Coq code to
generate blocks

Testing

A/B
Longitudinal

(Randomised Control)

User Experience

Customisation for teaching

24 of 26

Conclusion
● Novel Contributions

○ Applied fully-fledged structured editing to proof writing
○ Developed advanced structured editing features

Fully-fledged structured editing is a promising approach to proof writing that
warrants more exploration, development, and testing.

25 of 26

References
Sebastian Böhne and Christoph Kreitz. “Learning how to Prove: From the Coq Proof Assistant to Textbook Style”. In:
Electronic Proceedings in Theoretical Computer Science 267 (2018), pp. 1–18. DOI: 10.4204/eptcs. 267.1.

Neil Fraser. “Ten things we’ve learned from Blockly”. In: 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). 2015, pp. 49–50. DOI: 10.1109/BLOCKS.2015.7369000.

Valentin Robert. “Front-end tooling for building and maintaining dependently-typed functional programs”. PhD thesis.
University of California San Diego, 2018.

Acknowledgements
Michael D. Adams
Olivier Danvy
Emilio Jesús Gallego Arias

Full Report
bboey.com/henblocks

26 of 26

https://bboey.com/henblocks

