HenBlocks: Structured Editing for Coq

Coq Workshop 2022

Bernard Boey Supervisor: Michael D. Adams

Contents

• Background

- Coq Proof Assistant
- Structured Editing
 - Scratch
 - Hazel
- Existing Approaches to Coq Interfaces
- Objective
- Solution: HenBlocks
- Discussion
 - \circ Findings
 - Limitations
 - Future Work

Background

Background - Coq Proof Assistant

File Edit View Navigation Templates Queries Tools Compile Windows Help	
🖳 🗶 🔅 송 🗞 🖄 🌉 🖲 🧇 🚸	
≜ coq.v	
<pre>Proposition conjunction_is_commutative : forall P Q : Prop, P /\ Q -> Q /\ P. Proof. intros P Q. intro H_P and_Q. destruct H_P and_Q as [H_P H_Q]. split. - exact H_Q. - exact H_P. Qed. Fixpoint add (i j : nat) : nat := match i with</pre>	1 subgoal P, Q : Prop H_P : P H_Q : Q (1/1) Q
0 => j S i' => S (add i' j) end.	Messages / Errors / Jobs /
<pre>Property add_is_associative : forall x y z : nat, add x (add y z) = add (add x y) z. Proof. intros x y z. induction x as [x' IHx']. - simpl. reflexivity. - simpl. rewrite -> IHx'. reflexivity. Qed.</pre>	

0/0

Background - Mathematical Logic in Coq

```
Proposition conjunction is commutative :
  forall P Q : Prop,
    P / Q \rightarrow Q / P.
Proof.
  intros P Q.
  intro H P and Q.
  destruct H P and Q as [H P H Q].
  split.
  - exact H Q.
  - exact H P.
Oed.
```

Background - Functional Programming and Proving in Coq

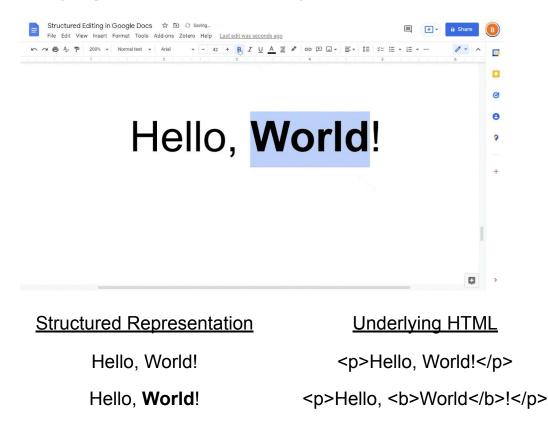
```
Fixpoint add (i j : nat) : nat :=
  match i with
  | 0 => j
  | S i' => S (add i' j)
  end.
Property add is associative :
  forall x y z : nat,
    add x (add y z) = add (add x y) z.
Proof.
  intros x y z.
  induction x as [ | x' IHx'].
  - simpl.
    reflexivity.
  - simpl.
    rewrite -> IHx'.
    reflexivity.
Qed.
```

Background - Pain Points of Coq

- 1. Type system complex and difficult to understand (Robert 2018)
- 2. Difficulty in learning new specification & tactic languages (Böhne & Kreitz 2018)
- 3. Friction in user experience (Robert 2018)

These 4 error messages are all due to the same kind of syntax error: missing a period (full stop) after a command/tactic.

The reference COMMMAND_OR_TACTIC_NAME was not found in the current environment.


Syntax error: [ltac_use_default] expected after [tactic] (in [tactic_command]).

No product even after head-reduction.

Syntax error: '.' expected after [command] (in [vernac_aux]).

Background - Structured Editing

Manipulation of underlying text content in a syntax-directed manner.

Background - Structured Editing

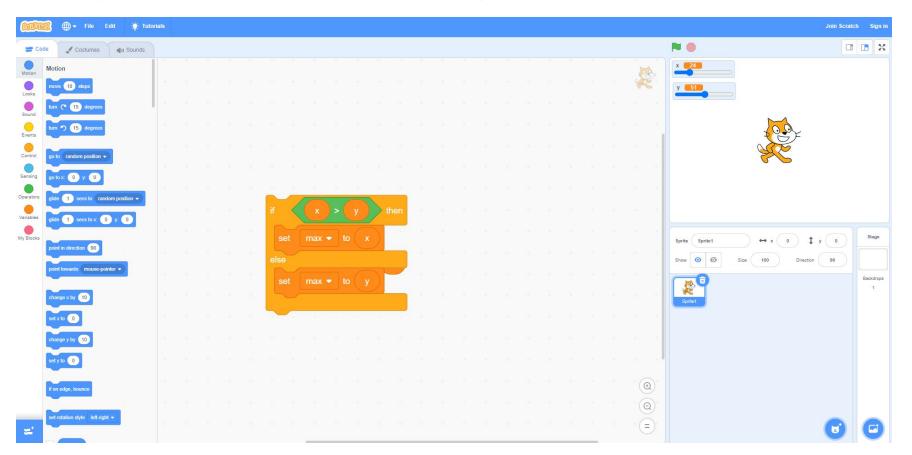
Varies in scope and scale

Plain Text Editors

Windows Notepad

Text Editors with Some Structured Editing Support

JetBrains IDEs (e.g. IntelliJ IDEA, PyCharm)


Other IDEs (e.g. Emacs, VSCode)

Fully-Fledged Structured Editors

WYSIWYG Editors (What You See Is What You Get) (e.g. PowerPoint, Wix)

Scratch, Hazel

Background - Structured Editing - Scratch

Background - Structured Editing - Hazel

Hazel ex	amples 🗸 map	~ < >
DITACTION		
Preview On initial state	Hover	5 ৫ ┥
initial state		
AVAILABLE E	MOVEMENT	A
Move using an Move to next /		Tab Shift + Tab
Move to next /	GENERAL EDITING	
Backspace / D		Backspace Delete
Swap line up /	down	Alt + ↑ Alt + ↓
Swap operand	l left / right	Alt + \leftarrow Alt + \rightarrow
Create new lin	e	Enter
Create new co	mment line	# Shift + Enter
Parenthesize		(
VARIABLES		
Variable regex: [_a-zA-Z][_a-zA-Z0-9']*		I-9']*
	to enter a let expression	
Type annotatic		
	BOOLEANS	

Background - Existing Approaches to Coq Interfaces

Prooftree, Proof-by-pointing, Actema, PeaCoq, Chick

nth_error_split proof tree		
F A		
induction t. L	Prove: Socrates:(), Human:(), Mortal:(); Human(Socrat Start))	Theorem t T f (p (a b c : T) (P : T -> Prop) i
simplin H,	+ expr + hyp Search lemma Mortal (Socrates)	
discriminate. admit. Previous sequent. a0. A A1: nth_error (a :: 1) 0 = Some a0 a 1 Firsth 0 (a :: 1) + 4 (a0 :: nil) + 4 skpn (0 + 1) (a :: 1) a. I = Firsth 0 (a :: 1) + 4 (a0 :: nil) + 4 skpn (0 + 1) (a :: 1) a 1 = Firsth 0 (a :: 1) + 4 (a0 :: nil) + 4 skpn (0 + 1) (a :: 1) Dismiss 2 open goals (no new) Menu	Socrates : () Image: Constant of the second se	
Sequent 1 of utb.envor_split A : Type a : A H : error = Some a nil = firstn 0 nil ++ (a : nil) ++ skipn (0 + 1) nil		7 (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)

Some intended for advanced users

Sticky

Dismiss

Some unrelated to Coq (separate custom system)

Some old and no longer maintained

Objective

• To explore the use of structured editing in writing Coq proofs by building an interactive GUI, and evaluate whether it can help alleviate the pain points

Solution

Solution - Methods

Text editor with structured editing support vs fully-fledged structured editor

Desktop app vs online web app

Backend Coq API: jsCoq

Frontend library: Blockly

Solution - HenBlocks

Target audience: Undergrad students with experience in functional programming but little/no experience in proving

Use case: Learn, discover, and practise proving, and eventually transition to writing textual proofs with text editors

Available at https://henblocks.github.io (desktop only)

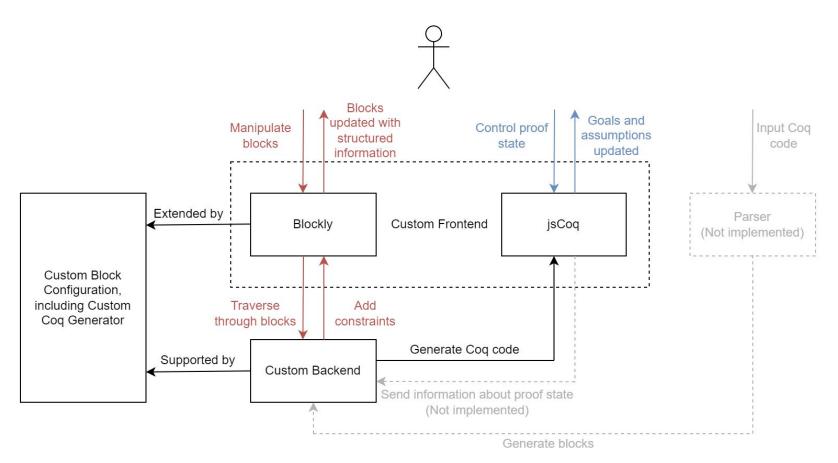
Commands Expressions Propositions Tactics	Theorem conjunction_is_commutative	HenBlocks
Examples Challenges	forall v + (+ - P Q : + Prop v) , (P v A Q v) + v (Q v A V (P v) Proof intro P intro Q intro H P_and_Q	1 Theorem conjunction 2 $\forall (P \ Q: P),$ 3 $P \land Q \Rightarrow Q \land P.$ 4 Proof. 5 intro P. 6 intro Q. 7 intro H.P and Q. 8 destruct H.P and Q. 9 split. 10 - exact H.Q. 11 - exact H.P. 12 Qed. 13
Toolbox	destruct H H P HQ exact H exact exact exact H exac	

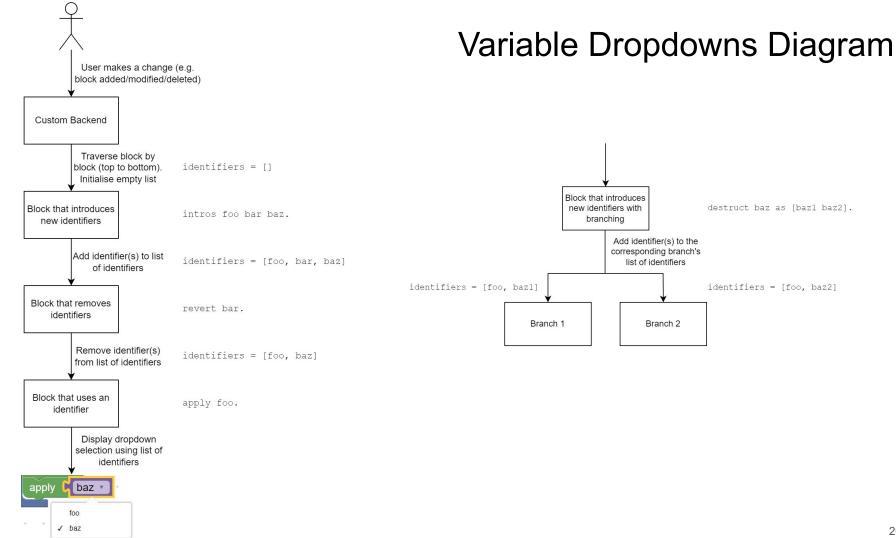
Download XML blocks

_is_commutative : as [H_P H_Q].

Code

S × ♦ ♦ ♦ ♦ Goals 1 goal P,Q:₽ H_P:P <mark>н_</mark>Q : Q Q Goals


0


lessages	Infa 🗸 🗸	
Coq.in	nit.Logic loaded.	
Coq.In	nit.Datatypes loaded.	
Coq.In	nit.Logic_Type loaded.	
Coq.In	nit.Specif loaded.	
Coq.In	nit.Decimal loaded.	
Coq.In	nit.Hexadecimal loaded.	
Coq.In	nit.Number loaded.	
Coq.In	nit.Nat loaded.	
Coq.In	nit.Byte loaded.	
Coq.In	nit.Peano loaded.	
Coq.In	nit.Wf loaded.	
Coq.In	nit.Tactics loaded.	
Coq.In	nit.Tauto loaded.	
/lib/C	Coq/syntax/number_string_notation_plugin.c	ma
/lib/C	Coq/ltac/tauto_plugin.cma loaded.	
/lib/C	Coq/cc/cc_plugin.cma loaded.	
/lib/C	Coq/firstorder/firstorder_plugin.cma loade	d.
	17 of 2	ie
ackages	11 01 2	1.64

Advanced Features

- Variable Dropdowns
- Automatic Renaming of Variables
- Automatic Slots for Subgoals

HenBlocks Architecture Diagram

Discussion

Discussion - Findings

- Existing interfaces for Coq have drawbacks
- Existing (non-Coq) fully-fledged structured editors do not go far enough
- We can go further than removing syntax errors by reducing semantic errors
 HenBlocks attempts to resolve the limitations, and alleviate the pain points
- We have to make compromises and simplifications to achieve a flatter learning curve

Discussion - Limitations

Potential for visual clutter

Slower than typing

Limited vocabulary

Discussion - Future Work

Testing

A/B Longitudinal (Randomised Control)

Development

Parsing Coq code to generate blocks

User Experience

Customisation for teaching

Conclusion

- Novel Contributions
 - Applied fully-fledged structured editing to proof writing
 - Developed advanced structured editing features

Fully-fledged structured editing is a promising approach to proof writing that warrants more exploration, development, and testing.

References

Sebastian Böhne and Christoph Kreitz. "Learning how to Prove: From the Coq Proof Assistant to Textbook Style". In: *Electronic Proceedings in Theoretical Computer Science* 267 (2018), pp. 1–18. DOI: 10.4204/eptcs. 267.1.

Neil Fraser. "Ten things we've learned from Blockly". In: 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond). 2015, pp. 49–50. DOI: 10.1109/BLOCKS.2015.7369000.

Valentin Robert. "Front-end tooling for building and maintaining dependently-typed functional programs". PhD thesis. University of California San Diego, 2018.

Acknowledgements

Michael D. Adams Olivier Danvy Emilio Jesús Gallego Arias

Full Report