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Background
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Background - Coq Proof Assistant
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Background - Mathematical Logic in Coq
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Background - Functional Programming and Proving in Coq
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Background - Pain Points of Coq
1. Type system complex and difficult to understand (Robert 2018)
2. Difficulty in learning new specification & tactic languages (Böhne & Kreitz 2018)
3. Friction in user experience (Robert 2018)

These 4 error messages are all due to the same kind of syntax error: missing a period (full stop) after a command/tactic.
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Background - Structured Editing
Manipulation of underlying text content in a syntax-directed manner.

Hello, World!

Structured Representation Underlying HTML

<p>Hello, World!</p>

Hello, World! <p>Hello, <b>World</b>!</p>
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Background - Structured Editing
Varies in scope and scale

Text Editors with 
Some Structured 
Editing Support

Plain Text Editors Fully-Fledged 
Structured Editors

Windows Notepad JetBrains IDEs (e.g. 
IntelliJ IDEA, PyCharm)

Other IDEs (e.g. Emacs, 
VSCode)

WYSIWYG Editors
(What You See Is What You Get)

(e.g. PowerPoint, Wix) 

Scratch, Hazel
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Background - Structured Editing - Scratch
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Background - Structured Editing - Hazel
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Background - Existing Approaches to Coq Interfaces
Prooftree, Proof-by-pointing, Actema, PeaCoq, Chick

Some unrelated to Coq
(separate custom system)

Some intended for 
advanced users

Some old and no longer 
maintained
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Objective
● To explore the use of structured editing in writing Coq proofs by building an 

interactive GUI, and evaluate whether it can help alleviate the pain points
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Solution
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Solution - Methods
Text editor with structured editing support vs fully-fledged structured editor

Desktop app vs online web app

Backend Coq API: jsCoq

Frontend library: Blockly
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Solution - HenBlocks
Target audience: Undergrad students with experience in functional programming 
but little/no experience in proving

Use case: Learn, discover, and practise proving, and eventually transition to 
writing textual proofs with text editors

Available at https://henblocks.github.io (desktop only)
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Toolbox Workspace Code Goals
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Advanced Features
● Variable Dropdowns
● Automatic Renaming of Variables
● Automatic Slots for Subgoals
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HenBlocks Architecture Diagram
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Variable Dropdowns Diagram
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Discussion
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Discussion - Findings
● Existing interfaces for Coq have drawbacks
● Existing (non-Coq) fully-fledged structured editors do not go far enough
● We can go further than removing syntax errors by reducing semantic errors

○ HenBlocks attempts to resolve the limitations, and alleviate the pain points
● We have to make compromises and simplifications to achieve a flatter 

learning curve
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Discussion - Limitations

Slower than typingPotential for visual clutter Limited vocabulary
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Discussion - Future Work

Development

Parsing Coq code to 
generate blocks

Testing

A/B
Longitudinal

(Randomised Control)

User Experience

Customisation for teaching
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Conclusion
● Novel Contributions

○ Applied fully-fledged structured editing to proof writing
○ Developed advanced structured editing features

Fully-fledged structured editing is a promising approach to proof writing that 
warrants more exploration, development, and testing.
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