HenBlocks:
Structured Editing for Coqg

Coq Workshop 2022

Bernard Boey
Supervisor: Michael D. Adams

Contents

e Background

o Coq Proof Assistant
o Structured Editing
m Scratch
m Hazel
o Existing Approaches to Coq Interfaces

e Objective
e Solution: HenBlocks

e Discussion
o Findings
o Limitations
o Future Work

2 of 26

Background

Background - Coqg Proof Assistant

BXYvrvalBocw

&coq.v

Proposition conjunction is commutative il
foralls BrO R Prop, P
PG =5 QN B HP: P
Proof. H
intros P Q. (1/1)
intro H P _and Q. Q
destruct H P and Q as [H P H Q].
split.
B exact H Q.
- exact H P.
Qed. N

Fixpoint add (i j : nat) : nat :=
match i with
| 0 =>7
| S i'" => S (add i' j)

end. Messages Errors | - Jobs

Property add is associative
forall x y z : nat,
add x (add y z) = add (add x y) z.

Proof.
intros x vy z.
Iriduction % as [| ¥ IEx"].
- simpl-
reflexivity.
- simpl.
rewrite -> IHx'.
reflexivity.
Qed.

tion_is_commutative Line: 35 Char: 1 0/0 4 of 26

Background - Mathematical Logic in Coq

Proposition conjunction is commutative
rarall P Q = Proy,
PN e = @ /\ P.
Proof.
intros P Q.
inktre H P angd 9.
destruct H P and QO as [H P H Q].
split. - B B B
= @xaet H Q.
= ‘exact H P.
Qed.

5 of 26

Background - Functional Programming and Proving in Coq

Fixpoint add (i j : nat) : nat :=
match 1 with
| 0 => 3
| .S 3* =>».8 (add i' 7j)
end.

Property add is associlative
forall Xy 2 @ nHat,

add x (add y z) = add (add x y) z.
Proof.
ITitTros X ¥ Zs
induction x as [| x' IHx'].
- simpl.
reflexivity.
- simpl.
rewrite -> IHx'.
reflexivity.

Qed.

6 of 26

Background - Pain Points of Coq

1. Type system complex and difficult to understand (Robert 2018)
2. Difficulty in learning new specification & tactic languages (Bohne & Kreitz 2018)
3. Friction in user experience (Robert 2018)

These 4 error messages are all due to the same kind of syntax error: missing a period (full stop) after a command/tactic.

The reference COMMMAND OR TACTIC NAME was not found in the current environment.

Syntax error: [ltac use default] expected after [tactic] (in [tactic command]).

No product even after head-reduction.

Syntax error: '.' expected after [command] (in [vernac aux]).

7 of 26

Background - Structured Editing

Manipulation of underlying text content in a syntax-directed manner.

a Structured Editing in Google Docs ~ #r Saving "5 @ m @
File Edit View Insert Format Tools Add-ons Zotero Help Lastedit was seconds ago
v IS v e RS

o~ ~ o A P 200% v Normaltet v Arial v|=la |+ |1 U A S @ EY = 1=

A Z) E- (12 = = (C

Hello, World! :

Structured Representation Underlying HTML
Hello, World! <p>Hello, World!</p>
Hello, World! <p>Hello, World!</p>

8 of 26

Background - Structured Editing

Varies in scope and scale

Plain Text Editors

Windows Notepad

Text Editors with
Some Structured
Editing Support

JetBrains IDEs (e.g.
Intellid IDEA, PyCharm)

Other IDEs (e.g. Emacs,

VSCode)

Fully-Fledged
Structured Editors

WYSIWYG Editors
(What You See Is What You Get)

(e.g. PowerPoint, Wix)

Scratch, Hazel

9 of 26

Background - St

®
0
Events

CLECIN qoto random position v
=l 00

giide o secsto random position

gl © -0 0

point in direction ()
point towards mouse-pointer v

change x by

sef rotation style left-right v

ructured Editing - Scratch

0)@®

Join Scratch S

Stay
Sprite | Spritel - x 0 3 0 o

show | @ | B Size 100

Backdrops

OO0

10 of 26

Background - Structured Editing - Hazel

Hazel examplesv map

EDIT ACTION HISTORY CONTEXT

v Preview On Hover Xs ¢ [Int]
initial stat
Infiakistate let map : (Int > Int) > [Int] > [Int] = f : Int > Int
fun f {
fun xs { map : (Int > Int)
case xs > [Int] > [Int]
[[1F=) [1 PI : Float
| yitys = (f y)::(map f ys) i
end int_of_float : Float > Int
oat_of_int : Int » Float
} £l f_i 1 Fl
}
AVAILABLE EDIT ACTIONS in mod : Int > Int 3 Int

MOVEMENT
Move using arrow keys
RESULT OF TYPE:
Move to next / previous hole Tab Shift + Tab

GENERAL EDITING

Backspace / Delete Backspace Delete
Swap line up / down Alt+1 | Alt+ |
Swap operand left / right Alt + — | Alt + —
Create new line Enter
Create new comment line # | Shift + Enter
Parenthesize (

VARIABLES

Variable regex: [_a-zA-Z][_a-zA-Z0-9"]*

Type "let " to enter a let expression

Move cursor to a hole, or click a hole instance in the result, to
BOOLEANS see closures.

>

Type annotation

11 of 26

Background - Existing Approaches to Coq Interfaces
Prooftree, Proof-by-pointing, Actema, PeaCoq, Chick

duction I;
}"‘“’"'\ Prove: Socrates:(), Human:(), Mortal:(); Human(Socrat ‘ Start nl) H c ‘

‘‘‘‘‘‘
,,,,,

Some intended for Some unrelated to Coq Some old and no longer
advanced users (separate custom system) maintained

12 of 26

Obijective

e To explore the use of structured editing in writing Coq proofs by building an
interactive GUI, and evaluate whether it can help alleviate the pain points

13 of 26

Solution

Solution - Methods

Text editor with structured editing support vs fully-fledged structured editor
Desktop app vs online web app

Backend Coq API: jsCoq

Built on

Frontend library: Blockly t Blockly

15 of 26

Solution - HenBlocks

Target audience: Undergrad students with experience in functional programming
but little/no experience in proving

Use case: Learn, discover, and practise proving, and eventually transition to
writing textual proofs with text editors

Available at https://henblocks.qgithub.io (desktop only)

16 of 26

https://henblocks.github.io

Commands
Expressions
Propositions
Tactics

Examples
Challenges

Toolbox

intro ([

intro €}

Nl H_P_and Q

| destruct - I H _P_and_Q - -5 + [

split | exact (FHCED
exact | GRS

Workspace

HenBlocks

4 Download Coq code £ Download XML blocks
T Upload XML blocks

1 Theorem conjunction_is_commutative :

intro Q.

intro H_P_and_Q.

destruct H_P_and_Q as [H_P H Q].
split.

- exact HQ.

- exact H_P.

Qed.

el
WRNRPOWOWONOWEWN

Code

296 x
A
l goal
P, Qi B
H.P =P
HQ:Q
Q
Goals
v vl
it.Logic loaded. A
it.Datatypes loaded.
it.Logic_Type loaded.
it.Specif loaded.
it.Decimal loaded.
.Hexadecimal loaded.
it.Number loaded.
it.Nat loaded.
.Byte loaded.
.Peano loaded.
.Wf loaded.
it.Tactics loaded.
B it.Tauto loaded.
" /1ib/Cog/syntax/number_string_notation_plugin.cme
» /1ib/Coq/1tac/tauto_plugin.cma loaded.
' /1ib/Coq/cc/cc_plugin.cma loaded.
) /1ib/Coqg/firstorder/firstorder_plugin.cma loaded.
4

= 17 of 264

Advanced Features

e Variable Dropdowns
e Automatic Renaming of Variables
e Automatic Slots for Subgoals

18 of 26

HenBlocks Architecture Diagram

Custom Block
Configuration,
including Custom
Coq Generator

‘Extended by

Supported by

Blocks
Manipulate updated with Control proof aSsOuanlws iggs
blocks structured state P
information updated
: Blockly Custom Frontend jsCoq
5 K A E
Traverse Add
through blocks constraints

«

Generate Coq code

Custom Backend

19 of 26

Variable Dropdowns Diagram

User makes a change (e.g.
block added/modified/deleted)

Custom Backend

Traverse block by
block (top to bottom). identifiers = []
’ Initialise empty list

Block that introduces

Block that introduces . new identifiers with destruct baz as [bazl baz2].
X - intros foo bar baz. .
new identifiers branching

Add identifier(s) to the
corresponding branch's

Add identifier(s) to list identifiers = [foo, bar, baz] list of identifiers

of identifiers

A 4

identifiers = [foo, bazl] identifiers = [foo, baz2]

Block that removes
identifiers

revert bar.
Branch 1 Branch 2

Remove identifier(s)

.) . identifiers = [foo, baz]
from list of identifiers
Y
Block that uses an SEBLT 56
identifier o
Display dropdown
selection using list of

identifiers
w
foo

v baz 20 of 26

C

ISCUSSION

Discussion - Findings

e Existing interfaces for Coq have drawbacks
e Existing (non-Coq) fully-fledged structured editors do not go far enough

e \We can go further than removing syntax errors by reducing semantic errors
o HenBlocks attempts to resolve the limitations, and alleviate the pain points

e \We have to make compromises and simplifications to achieve a flatter
learning curve

22 of 26

Discussion - Limitations

Potential for visual clutter Slower than typing Limited vocabulary

23 of 26

Discussion - Future Work

Testing
SO User Experience
AE Parsing Coq code to
Longitudinal 9 %09 Customisation for teaching

(Randomised Control) generate blocks

24 of 26

Conclusion

e Novel Contributions

o Applied fully-fledged structured editing to proof writing
o Developed advanced structured editing features

Fully-fledged structured editing is a promising approach to proof writing that
warrants more exploration, development, and testing.

25 of 26

References

Sebastian Béhne and Christoph Kreitz. “Learning how to Prove: From the Coq Proof Assistant to Textbook Style”. In:
Electronic Proceedings in Theoretical Computer Science 267 (2018), pp. 1-18. DOI: 10.4204/eptcs. 267.1.

Neil Fraser. “Ten things we’ve learned from Blockly”. In: 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). 2015, pp. 49-50. DOI: 10.1109/BLOCKS.2015.7369000.

Valentin Robert. “Front-end tooling for building and maintaining dependently-typed functional programs”. PhD thesis.
University of California San Diego, 2018.

Acknowledgements

Michael D. Adams
Olivier Danvy
Emilio Jesus Gallego Arias

Full Report

bboey.com/henblocks

26 of 26

https://bboey.com/henblocks

