v

i
QuantumLib:

A Library for Quantum Computing in Coq

EPQC

Collaborators

Jacob Zweifler Kesha Hietala Robert Rand
University of Chicago Amazon University of Chicago
jzweifler@uchicago.edu kesha@cs.umd.edu rand@uchicago.edu

Additional list of contributors can be found at: https://github.com/iInQWIRE/QuantumLib

https://github.com/inQWIRE/QuantumLib

Why Verify Quantum Computing?

e (Can be faster than classical systems
o Quantum simulation
o Shor’s algorithm: encryption
o @Grover’s search algorithm
e Quantum Advantage in practice
o @Google’s random circuit sampling
o Boson sampling (USTC, Xanadu)
e Quantum computing is hard!
o Conceptually hard
o Very error-prone

IBM’s 127 qubit quantum computer

Quantum Bits: Qubits

Bit Qubit

[¥) = a|0) + B[1)

0 %)
87
Represented by] :

- »

1 1 where |af* + |8]* =1

Quantum Gates: Unitary Operators

e (Gates act on qubits to change their state
o Eg:X Y, Z,H ST

Corresponding matrix

Examples of A
gate application: multiplication:
T X10) =1 Lol o] = 1
| - 1 o]0l |1
(0 =i11) \:5(“3’ 1)
|-i) 0 =)
I |1 1 I |1 1
i - — 35[0 A Gl
i [+ e
\%(w:wll}) %(man 1))
1)

Quantum Circuits

e (Circuits represented by

kronecker product:

(5) e

_» — 2

~—

N

» Quantum > o

S | computing —» e
< n n <
= U (2 X 2) 8=
7

<

QO

N L, =

of aubits

T I

l

Controller (classic Computer)

Quantum Programs

e Applying gates corresponds to multiplication by padded matrix:

q_0: I H®I

Applied to

ql: 41 H |
a1 9 Q3
[51] = [52] . [53]

9

oenen<([5] o [5] e [3])— 0 (5)e(r ()= (3)

Why QuantumLib?

e Provide a backbone for quantum computing projects in Coq

e Tailored specifically towards quantum computing

o QuantumLib is more efficient and comprehensive than other more
general libraries
o Can act as an extension of MathComp or Ccorn

e Consists of both low level and high level components

To do this, we rigorize the notions of
Hilbert spaces in Coq: C?

Underlying Field Structure: Complex Numbers

e Coquelicot’s complex numbers:
o Added lemmas involving Euler’s identity

e Polar coordinates
o [Eg:eix

n
e Summation notation (AB)ZJ — Z AZkBk]
k=1

Definition C := (R % R)%type.

e Computable for our purposes
o Sufficient rewrite lemmas
o Proof that C is a field

e Polynomials over C and proof of completeness
o Used for facts about determinants and eigenvectors

Matrices Over C

e Matrices defined as follows:

Definition Matrix (m n : nat) := nat —> nat — C.

e Matrices must be well-formed:
: Matrix m n) : Prop :=

Definition WF_Matrix {m n: nat} (A :
forall x y, x> m\/y>n->AXxy=0.

e Examples:
Definition I (n : nat) : Square n :=
fun x y => if (x =? y) && (x <? n)

Definition ox : Matrix 2 2 :

fun x y => match x, y with
| 0, 1 =1 then 1
| 1, 0 =1 else 0.

Gx:(o 1) |—'—=>0
1 0 end.

10

Some Example Operations

Definition Mplus {m n : nat} (A B : Matrix m n) : Matrix m n :=
fun x y == (A Xy + B xy).

Definition Mmult {m n o : nat} (A : Matrix m n) (B : Matrix n o) : Matrix m o :

fun x z => big_sum (fun y => A Xy x By z) n.
Applying circuits in series

Definition kron {m n o p : nat} (A : Matrix m n) (B : Matrix o p) :
Matrix (mxo) (nxp) :=

fun x y = (A (x /7 0) (y/ p)) * (B (x mod o) (y mod p)).

Applying circuits in parallel

11

Compatibility between Mmult and kron

q_0 gV

ql: {41 H — ql: q4 H

q_2 VA q_2 4 72 F
Applying circuits in series Applying circuits in parallel

Lemma program_equivalence : (I®@He®eI) x (IeI®Z) =(Ie®He2Z).

12

Why These Design Choices?

e Phantom types help with proofs
o Useful since kron changes size of matrix

Lemma kron_assoc : forall {m np q r s : nat}
(A : Matrix m n) (B : Matrix p q) (C : Matrix r s),
(AeB) e C=A@ (Be ().
— ™~

Matrix ((mkp)xr) ((nxq)*s) Matrix (mk(pxr)) (nx(gxs))

Definition pad {n} (start dim : nat) (A : Square (2”n)) : Square (2°dim) :=
if start + n <=? dim then I (2”start) @ A ® I (2~(dim - (start + n))) else Zero.

e Not clear that (2start * 2n * 2dim - (start + n)) = 2dim

o Relies on guard
13

Other components

Lemma HO_spéc : hadamard x 0) = |+).

e Comprehensive linear algebra Plodt. 1oa' Oed.
o Linear independence, diagonalizability, determinant
. Lemma H1l_spec : hadamard x |1) = |-).
o Eigenvectors Proof. lma'. Qed.

e Quantum components

o Low level: basic states and gates

o High level: padded gates, pure/mixed states
e Measurement and probability theory

e Translation to/from different representations of quantum objects

o Vector states
o Permutations

Definition pad_u (dim n : nat) (u : Square 2) :
Square (2~dim) := @pad 1 n dim u.

Fixpoint f_to_vec (n : nat) (f : nat —> bool) : Vector (2%n) :=
match n with
| 0=1I1
| Sn' = (f_to_vecn' f)e|fn')
end. 14

Matrix Tactics

e \Well-formedness tactics
o show_ wfand wf db

e Ima
e gridify
o Good for symbolic proofs

e solve_matrix
o Good for numerical computations

e restore_dims

15

Ima:

(

e Breaks down equality statement into cells
e EQ:

Lemma MmultYY : oy x oy = I 2. Proof. lma. Qed.

0x0+(-1)*1i Ox(-1)+(—-1)*0

o_ﬁ<04)
20 70 P i%(—1)+0%0

16

gridify:

Lemma pad_mult : forall n dim start (A B : Square (2”n)),
pad start dim A x pad start dim B = pad start dim (A x B).
Proof.

intros. (I (2~start) e AeI (2~d)) x (I (2~ start) eBe I (2~ d))
unfold pad. e

gridify. I (2~ start) @ (AxB)@®I(2"d)
reflexivity.
Qed.

Lemma pad_A_B_commutes : forall dim m n A B,
m<>n —>
WF_Matrix A —>
WF_Matrix B —>
pad_u dim m A x pad_u dim n B = pad_u dim n B x pad_u dim m A.
Proof.
intros.
unfold pad_u, pad.
gridify; trivial.
Qed.

17

QuantumLib in Practice

QWIRE

o Quantum language built in QWIRE
= Dependent types

SQIR/VOQC

o Uses translations between matrices
o Proof of Shor’s algorithm, Grover’s algorithm, teleportation

VyZX
o ZX calculus: graphical representation of quantum computing
Verification of Gottesman logic

18

Why QuantumLib Instead of Other Libraries?

e Works well with Kronecker product

e Tailored specifically to quantum computing
o Contains additional components that other libraries lack

e Large math foundation
e Many rewrite lemmas/tactics
e \ery compatible with other libraries (coming soon)

19

Challenges

e Slow when matrices get large

o 3 qubits much worse than 2

o 4 qubits very slow

o Multiplication: O(n3) when n is matrix size so O(23n) when n is number of qubits
e Showing dimensions align

o kron mixed product rule can be hard to apply
e Not actually computable

o Leads to more slowness

20

Things for the Future

e Make tactics even better
o Improve gridify by having different versions

e Add more linear algebra proofs
o More matrix properties
o Proof of Gottesman-Knill theorem

e Add more lemmas to Pad.v
o More commutation lemmas
e \ersion with Ccorn for more computable matrices

21

More Things for the Future

e Group, ring, field typeclasses
o field and ring exist in Coq, why not other structures?
= Reification-style tactics
o (Generalize matrices to be over any field
o Would make integration with Ccorn very easy
o Finite fields

22

Summary

e Quantum computing occurs over Hilbert spaces
o Strong interplay between matrix multiplication and kronecker product

® Matrix definition: Definition Matrix (m n : nat) := nat —> nat —> C.
o Matrices must also be well formed

Defined many quantum computing notions

Matrix tactics

Project found at https://github.com/inQWIRE/QuantumLib

To install:
0 opam install cog-quantumlib

23

https://github.com/inQWIRE/QuantumLib

