
QuantumLib:
A Library for Quantum Computing in Coq

1

Collaborators

Jacob Zweifler

University of Chicago

jzweifler@uchicago.edu

Robert Rand

University of Chicago

rand@uchicago.edu

Kesha Hietala

Amazon

kesha@cs.umd.edu

2
Additional list of contributors can be found at: https://github.com/inQWIRE/QuantumLib

https://github.com/inQWIRE/QuantumLib

Why Verify Quantum Computing?
● Can be faster than classical systems

○ Quantum simulation

○ Shor’s algorithm: encryption

○ Grover’s search algorithm

● Quantum Advantage in practice

○ Google’s random circuit sampling

○ Boson sampling (USTC, Xanadu)

● Quantum computing is hard!

○ Conceptually hard

○ Very error-prone IBM’s 127 qubit quantum computer

3

Quantum Bits: Qubits

Represented by ,

where

4

Quantum Gates: Unitary Operators
● Gates act on qubits to change their state

○ Eg: X, Y, Z, H, S, T

5

Examples of
gate application:

Corresponding matrix
multiplication:

Quantum Circuits

● Circuits represented by
kronecker product:

6

Quantum Programs

● Applying gates corresponds to multiplication by padded matrix:

7

Applied to

Why QuantumLib?

● Provide a backbone for quantum computing projects in Coq

● Tailored specifically towards quantum computing

○ QuantumLib is more efficient and comprehensive than other more
general libraries

○ Can act as an extension of MathComp or Ccorn

● Consists of both low level and high level components

To do this, we rigorize the notions of
Hilbert spaces in Coq: ℂ2n

8

Underlying Field Structure: Complex Numbers

● Coquelicot’s complex numbers:

○ Added lemmas involving Euler’s identity

● Polar coordinates

○ Eg: eix

● Summation notation

● Computable for our purposes

○ Sufficient rewrite lemmas

○ Proof that ℂ is a field

● Polynomials over ℂ and proof of completeness

○ Used for facts about determinants and eigenvectors

9

Matrices Over ℂ

10

● Matrices defined as follows:

● Matrices must be well-formed:

● Examples:

Some Example Operations

11

Applying circuits in parallel

Applying circuits in series

Compatibility between Mmult and kron

12

Applying circuits in series Applying circuits in parallel

=

Why These Design Choices?
● Phantom types help with proofs

○ Useful since kron changes size of matrix

13

● Not clear that (2start * 2n * 2dim - (start + n)) = 2dim

○ Relies on guard

Other components
● Comprehensive linear algebra

○ Linear independence, diagonalizability, determinant

○ Eigenvectors

● Quantum components

○ Low level: basic states and gates

○ High level: padded gates, pure/mixed states

● Measurement and probability theory

● Translation to/from different representations of quantum objects

○ Vector states

○ Permutations

14

Matrix Tactics

● Well-formedness tactics

○ show_wf and wf_db

● lma

● gridify

○ Good for symbolic proofs

● solve_matrix

○ Good for numerical computations

● restore_dims

15

lma:

● Breaks down equality statement into cells

● Eg:

16

...

...

gridify:

17

QuantumLib in Practice

● QWIRE

○ Quantum language built in QWIRE

■ Dependent types

● SQIR/VOQC

○ Uses translations between matrices

○ Proof of Shor’s algorithm, Grover’s algorithm, teleportation

● VyZX

○ ZX calculus: graphical representation of quantum computing

● Verification of Gottesman logic

18

Why QuantumLib Instead of Other Libraries?

● Works well with Kronecker product

● Tailored specifically to quantum computing

○ Contains additional components that other libraries lack

● Large math foundation

● Many rewrite lemmas/tactics

● Very compatible with other libraries (coming soon)

19

Challenges

● Slow when matrices get large

○ 3 qubits much worse than 2

○ 4 qubits very slow

○ Multiplication: O(n3) when n is matrix size so O(23n) when n is number of qubits

● Showing dimensions align

○ kron mixed product rule can be hard to apply

● Not actually computable

○ Leads to more slowness

20

Things for the Future

● Make tactics even better

○ Improve gridify by having different versions

● Add more linear algebra proofs

○ More matrix properties

○ Proof of Gottesman-Knill theorem

● Add more lemmas to Pad.v

○ More commutation lemmas

● Version with Ccorn for more computable matrices

21

More Things for the Future

22

● Group, ring, field typeclasses

○ field and ring exist in Coq, why not other structures?

■ Reification-style tactics

○ Generalize matrices to be over any field

○ Would make integration with Ccorn very easy

○ Finite fields

Summary

● Quantum computing occurs over Hilbert spaces

○ Strong interplay between matrix multiplication and kronecker product

● Matrix definition:

○ Matrices must also be well formed

● Defined many quantum computing notions

● Matrix tactics

● Project found at https://github.com/inQWIRE/QuantumLib
● To install:

○ opam install coq-quantumlib

23

https://github.com/inQWIRE/QuantumLib

