
A Coq Library for Mechanised First-Order Logic

Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc Hermes, Mark Koch,
Dominique Larchey-Wendling∗, Niklas Mück, Benjamin Peters, Gert Smolka, Dominik Wehr

Saarland University, Saarland Informatics Campus, Germany
∗Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France

The Coq Workshop’22, Haifa, Israel, August 12th

computer science

saarland
university

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 1

http://www.cs.uni-saarland.de/
https://www.loria.fr/en/
http://www.cnrs.fr/en/cnrs

Contributors

Dominik Kirst Johannes Hostert Andrej Dudenhefner Yannick Forster Marc Hermes Mark Koch

Dominique Larchey-Wendling Niklas Mück Benjamin Peters Gert Smolka Dominik Wehr

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 2

Background

Merge of several developments concerned with first-order logic

Published at several venues (CPP, ITP, IJCAR, LFCS, FSCD, TYPES, JAR, JLC, LMCS)

Design of a core framework general enough to accommodate all results

Import of developments based on earlier versions of the framework

Developed in a fork of the Coq library of undecidability proofs (Forster et al. (2020))

https://github.com/dominik-kirst/
coq-library-undecidability/tree/fol-library/theories/FOL

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 3

https://github.com/dominik-kirst/coq-library-undecidability/tree/fol-library/theories/FOL
https://github.com/dominik-kirst/coq-library-undecidability/tree/fol-library/theories/FOL

Framework

Emerged over several projects with ideas from various contributors:

Deep embedding of syntax, deduction systems, and semantics

Combination of well-known techniques, most notably de Bruijn indices

Tool support for easy interaction by external users

Took most inspiration from O’Connor (2009); Ilik (2010); Herbelin and
Lee (2014); Han and van Doorn (2020); Laurent (2021)

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 4

Framework: Syntax

Terms and formulas are represented as inductive types T and F over a signature Σ = (FΣ,PΣ):

t : T ::= xn | f ~t (n : N, f : FΣ, ~t : T|f |)

ϕ,ψ : F ::= ⊥ | P ~t | ϕ→ ψ | ϕ ∧ ψ | ϕ ∨ ψ | ∀ϕ | ∃ϕ (P : PΣ, ~t : T|P|)

Syntax modular in type classes for binary connectives and quantifiers

Common instances (→,∀) and (→,∧,∨,∀,∃) provided

Availability of ⊥ regulated via type class flag

De Bruijn indices encode the number of quantifiers shadowing their relevant binder

Capture-avoiding instantiation t[σ] and ϕ[σ] for parallel substitutions σ : N→ T

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 5

Framework: Syntax (Coq)
Context {sig_funcs : funcs_signature}.

Inductive term : Type :=
| var : nat -> term
| func : forall (f : syms), vec term (ar_syms f) -> term.

Context {sig_preds : preds_signature}.

Inductive falsity_flag := falsity_off | falsity_on.
Existing Class falsity_flag.

Class operators := {binop : Type ; quantop : Type}.
Context {ops : operators}.

Inductive form : falsity_flag -> Type :=
| falsity : form falsity_on
| atom {b} : forall (P : preds), vec term (ar_preds P) -> form b
| bin {b} : binop -> form b -> form b -> form b
| quant {b} : quantop -> form b -> form b.

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 6

Framework: Deduction Systems

Proof rules are represented as inductive predicates relating a context Γ to a formula ϕ:

. . .

Γ[↑] ` ϕ
Γ ` ∀ϕ AI

Γ ` ∀ϕ
Γ ` ϕ[t]

AE
Γ ` ϕ[t]

Γ ` ∃ϕ EI
Γ ` ∃ϕ Γ[↑], ϕ ` ψ[↑]

Γ ` ψ EE

. . .

Quantifier rules use shifted contexts Γ[↑] so that x0 acts as canonical free variable

Trivialises structural properties like substitutivity and weakening

Availability of classical rules regulated via type class flag

Similar representation of sequent calculi and other systems

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 7

Framework: Deduction Systems (Coq)
Context {sig_funcs : funcs_signature}.
Context {sig_preds : preds_signature}.

Reserved Notation 'A ` phi' (at level 61).

Inductive peirce := class | intu.
Existing Class peirce.

Inductive prv : forall (ff : falsity_flag) (p : peirce), list form -> form -> Prop :=
| II {ff} {p} A phi psi : phi::A ` psi -> A ` phi --> psi
| IE {ff} {p} A phi psi : A ` phi --> psi -> A ` phi -> A ` psi
| AllI {ff} {p} A phi : map (subst_form ↑) A ` phi -> A ` ∀ phi
| AllE {ff} {p} A t phi : A ` ∀ phi -> A ` phi[t..]
| Exp {p} A phi : prv p A falsity -> prv p A phi
| Ctx {ff} {p} A phi : phi el A -> A ` phi
| Pc {ff} A phi psi : prv class A (((phi --> psi) --> phi) --> phi)
where 'A ` phi' := (prv _ A phi).

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 8

Framework: Semantics

Tarski modelsM are represented as a domain type D and symbol interpretations:

f M : D |f | → D PM : D |P| → P

Interpretation of terms and formulas based on assignments ρ : N→ D

Term evaluation ρ̂ t defined recursively, main rule ρ̂ (f ~t) := f M (ρ̂ ~t)

Formula satisfaction ρ � ϕ defined recursively, main rule ρ � P ~t := PM (ρ̂ ~t)

Induces the logical entailment relation Γ � ϕ

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 9

Framework: Semantics (Coq)
Context {domain : Type}.

Class interp := B_I
{ i_func : forall f : syms, vec domain (ar_syms f) -> domain ;

i_atom : forall P : preds, vec domain (ar_preds P) -> Prop ; }.

Definition env := nat -> domain.

Context {I : interp}.

Fixpoint eval (rho : env) (t : term) : domain := match t with
| var s => rho s
| func f v => i_func (Vector.map (eval rho) v) end.

Fixpoint sat {ff : falsity_flag} (rho : env) (phi : form) : Prop := match phi with
| atom P v => i_atom (Vector.map (eval rho) v)
| falsity => False
| bin Impl phi psi => sat rho phi -> sat rho psi
| quant All phi => forall d : domain, sat (d .: rho) phi end.

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 10

Framework: Axiom Systems

Concrete axiom systems A are modelled as predicates of formulas over a specific signature.

For the example of Peano arithmetic (PA), we instantiate to the arithmetical signature

(O, S_ , _ + _ , _×_ ; _ ≡ _)

and collect the usual axioms, with the induction scheme represented as all instances of

ϕ[O]→ (∀x . ϕ[x]→ ϕ[S x])→ ∀x . ϕ[x].

Include fragments of PA like Robinson’s Q, also several variants of ZF set theory

Equality ≡ seen as axiomatised symbol of the signature rather than a logical primitive

Axiom systems A induce relatives deductive and semantic theories A ` ϕ and A � ϕ

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 11

Framework: Tool Support

Tools presented at last year’s Coq Workshop (Hostert et al. (2021)):

HOAS-input language
I Concrete formulas can be written with Coq binders instead of de Bruijn indices
I Eases interaction with the syntax

Proof mode (inspired by Iris proof mode, Krebbers et al. (2017))
I Tactic and notation layer hiding the proof rules
I Eases interaction with the deduction systems

Reification tactic (employing MetaCoq, Sozeau et al. (2020))
I Extracts first-order formulas from Coq predicates
I Eases interaction with the semantics

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 12

Framework: Tool Support (Proof Mode)

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Proofmode/DemoPA.v

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 13

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Proofmode/DemoPA.v

Framework: Tool Support (Reification Tactic)

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Reification/DemoPA.v

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 14

https://github.com/dominik-kirst/coq-library-undecidability/blob/fol-library/theories/FOL/Reification/DemoPA.v

Framework: Evolution
Forster, Kirst, Smolka (2019) at CPP’19:

Concrete signature, small logical fragment, named variables
Among the initial projects constituting the undecidability library

Forster, Kirst, and Wehr (2021) at LFCS’20/JLC’21:
Arbitrary signature, both logical fragments, de Bruijn encoding
Use of Autosubst 2 (Stark et al. (2019)) for de Bruijn boilerplate

Kirst and Larchey-Wendling (2020) at IJCAR’20/LMCS’22:
Parametric in logical fragment, merged into undecidability library
Refrains from Autosubst 2 mostly due to dependency on function extensionality

Kirst and Hermes (2021) at ITP’21/JAR’22:
Compromise of previous developments, merged into undecidability library
Still no explicit code generation with Autosubst 2 but identical design

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 15

Framework: Comparison

Development Signature Binding (AI)-Rule Weakening

O’Connor arbitrary named side-condition n.a.

Ilik monadic locally-nameless co-finite easy

Herbelin et al. dyadic locally-named side-condition needs renaming

Han and van Doorn arbitrary de Bruijn shifting easy

Laurent full anti-loc.-namel. shifting easy

Our framework arbitrary de Bruijn shifting easy

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 16

Content

Overview:

Many metamathematical results: completeness, undecidability, incompleteness

Many interdependencies, based on the Coq library of undecidability proofs

Many possible projects/collaborations: syntactic cut-elimination, Hilbert systems,
Löwenheim-Skolem theorems, resolution, tableaux, constructible hierarchy, . . .

Shared methods:

Constructive meta-theory where possible

Synthetic approach to computability results

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 17

Content: Completeness

In which situations does Γ � ϕ imply Γ ` ϕ?

Based on the publication Forster et al. (2021):

Constructively extremely subtle topic, extensive related literature

Model-theoretic semantics (Tarski/Kripke) yield connections to MP and LEM

Fully constructive proofs for algebraic and dialogical semantics

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 18

Content: Undecidability

Which decision problems of first-order logic are undecidable?

Library includes all common undecidability results:

Validity, provability, satisfiability (Forster et al. (2019))

Finite satisfiability (Kirst and Larchey-Wendling (2020))

Strongest versions regarding binary signatures (Hostert et al. (2022))

Several variants of PA and ZF (Kirst and Hermes (2021))

Post’s theorem on the arithmetical hierarchy (Kirst et al. (2022))

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 19

Content: Incompleteness

Which axiom systems A satisfy A ` ϕ or A ` ¬ϕ for all ϕ?

Library exploiting the connection to undecidability:

Incompleteness of several variants of PA and ZF (Kirst and Hermes (2021))

Essential incompleteness of Q (Peters and Kirst (2022))

Tennenbaum’s theorem on computable models of PA (Hermes and Kirst (2022))

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 20

Current Status: Overview

Completed core framework

Main completeness, undecidability, and incompleteness results imported

Essential incompleteness, Tennenbaum’s theorem, and Post’s theorem pending

Signature transformations and further computability results planned to be imported 7

Total: about 25k lines of code (8500 spec, 15500 proofs, 1000 comments), 110 files

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 21

Current Status: Structure

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 22

Current Status: Pending Contributions

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 23

Current Status: Activity

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 24

Future Plans

1 Finish importing the remaining developments

2 Possible round of refactoring (proof mode performance, falsity flags)

3 Decide on a plan how to integrate with the undecidability library

4 Follow the release cycle of the undecidability library, itself following Coq

5 Possible timeline: opam package for Coq 8.16, add to Coq CI for Coq 8.17

6 At any time: help new users get started and contribute their developments!

Thanks for listening!
The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 25

Bibliography I
Forster, Y., Kirst, D., and Smolka, G. (2019). On synthetic undecidability in Coq, with an application to the

Entscheidungsproblem. In 8th International Conference on Certified Programs and Proofs.

Forster, Y., Kirst, D., and Wehr, D. (2021). Completeness theorems for first-order logic analysed in constructive
type theory: Extended version. Journal of Logic and Computation, 31(1):112–151.

Forster, Y., Larchey-Wendling, D., Dudenhefner, A., Heiter, E., Kirst, D., Kunze, F., Smolka, G., Spies, S.,
Wehr, D., and Wuttke, M. (2020). A Coq library of undecidable problems. In CoqPL 2020 The Sixth
International Workshop on Coq for Programming Languages.

Han, J. and van Doorn, F. (2020). A formal proof of the independence of the continuum hypothesis. In 9th
International Conference on Certified Programs and Proofs.

Herbelin, H. and Lee, G. (2014). Formalizing logical meta-theory – semantical cut-elimination using Kripke
models for first-order predicate logic.

Hermes, M. and Kirst, D. (2022). An analysis of Tennenbaum’s theorem in constructive type theory. In 7th
International Conference on Formal Structures for Computation and Deduction (FSCD 2022).

Hostert, J., Dudenhefner, A., and Kirst, D. (2022). Undecidability of dyadic first-order logic in Coq. In 13th
International Conference on Interactive Theorem Proving (ITP 2022).

Hostert, J., Koch, M., and Kirst, D. (2021). A toolbox for mechanised first-order logic. In The Coq Workshop,
volume 2021.

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 26

Bibliography II

Ilik, D. (2010). Constructive completeness proofs and delimited control. PhD thesis, Ecole Polytechnique X.

Kirst, D. and Hermes, M. (2021). Synthetic undecidability and incompleteness of first-order axiom systems in
Coq. In 12th International Conference on Interactive Theorem Proving (ITP 2021).

Kirst, D. and Larchey-Wendling, D. (2020). Trakhtenbrot’s theorem in Coq. In International Joint Conference
on Automated Reasoning. Springer.

Kirst, D., Mück, N., and Forster, Y. (2022). Synthetic versions of the Kleene-Post and Post’s theorem. TYPES
2022.

Krebbers, R., Timany, A., and Birkedal, L. (2017). Interactive proofs in higher-order concurrent separation
logic. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, page 205–217, New York, NY, USA. Association for Computing Machinery.

Laurent, O. (2021). An anti-locally-nameless approach to formalizing quantifiers. In 10th International
Conference on Certified Programs and Proofs.

O’Connor, R. (2009). Incompleteness & completeness: formalizing logic and analysis in type theory. PhD thesis,
Radboud University of Njimegen.

Peters, B. and Kirst, D. (2022). Strong, synthetic, and computational proofs of Gödel’s first incompleteness
theorem. TYPES 2022.

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 27

Bibliography III

Sozeau, M., Anand, A., Boulier, S., Cohen, C., Forster, Y., Kunze, F., Malecha, G., Tabareau, N., and
Winterhalter, T. (2020). The MetaCoq Project. Journal of Automated Reasoning, 64.

Stark, K., Schäfer, S., and Kaiser, J. (2019). Autosubst 2: reasoning with multi-sorted de Bruijn terms and
vector substitutions. In 8th International Conference on Certified Programs and Proofs.

The Coq Workshop’22 A Coq Library for Mechanised First-Order Logic August 12th, 2022 28

	References
	Appendix

