HenBlocks: Structured Editing for Coq

Bernard Boey and Michael D. Adams
Yale-NUS College, Singapore

Abstract

There are a number of pain points in using the Coq Proof Assistant, which affects beginners
most. Structured editors, which allow the user to manipulate structured blocks corresponding to the
abstract syntax of a program, have been used to make programming more accessible to beginners.
However, they have not been applied to proving thus far. We present HenBlocks (available at https:
//henblocks.github.io), a web-based fully-fledged structured editor that allows users to write Coq
proofs by manipulating blocks. We conclude that structured editing is a promising approach to proof
writing that warrants more exploration, development, and testing.

Background. Readers are assumed to be familiar with theorem proving and the Coq Proof Assistant.
Structured editing is manipulation of underlying text content in a syntax-directed manner. Instead of the
user making low-level edits by directly modifying text, the editor helps them make higher-level edits that
require awareness of the syntax of the content. On one hand, we have text editors with some structured
editing support (e.g. Integrated Development Environments (IDEs) such as IntelliJ IDEA, Emacs, and
VS Code). On the other hand, we have fully-fledged structured editors (e.g. Scratch, Hazel). We focus
on fully-fledged structured editors, where it is usually not possible to have incorrect syntax, because the
editor generates output syntax from higher level representations.

Motivation. There are a number of pain points in using Coq. First, the type system is complex
and difficult to understand, such as the use of dependently typed programming. Such complexities
contribute to the difficulty in making “proper mental models for what happens ‘behind the scenes’ when
[interacting] with a proof assistant” [6]. Second, there is difficulty in learning new specification and
tactic languages (i.e. Gallina, Ltac). While seemingly similar to their functional programming counter-
parts (i.e. OCaml), such languages have different rules and a tremendous amount of new vocabulary. For
example, Coq tactics “have unstructured names and are therefore hard to remember” [2]. Third, there is
friction in the user experience (e.g. incomprehensible syntax error messages). Based on our research,
existing interfaces for Coq or theorem proving (e.g. Prooftree [8], Proof-by-pointing [1], Actema [3], Pea-
Coq [6], Chick [6]) do not sufficiently simplify the learning process. Additionally, fully-fledged structured
editing has not been applied to Coq thus far.

HenBlocks

R Conjunciion 15_commutaiive

e+ -0 0 - c I

Solution. We present HenBlocks, a web-based fully-fledged structured editor for Coq built using the
Blockly library [7] and jsCoq [5]. The primary target audience for HenBlocks is undergraduate students
who have some experience with functional programming but with little or no experience in proving.
The intended use case is for such students to learn, discover, and practise proving with HenBlocks, and


https://henblocks.github.io
https://henblocks.github.io

eventually transition to writing textual proofs via a text editor such as CoqIDE or Emacs. HenBlocks
is freely accessible at https://henblocks.github.io as a static web app. The source code (primarily
JavaScript) can be found at https://github.com/henblocks/henblocks.github.io. The user interface
is divided into four sections from left to right: 1) Toolbox (expandable panel containing all types of blocks
that can be used), 2) Workspace (where the user rearranges and modifies blocks), 3) Code (generated
Coq code from the blocks), and 4) Goals.

Design and Implementation. HenBlocks provides a number of structured editing features. First,
we have variable dropdowns, which allow the user to select an identifier (e.g. theorem name, variable
name, constructor, or hypothesis), that is guaranteed to be in scope, from a pre-populated dropdown list.
Second, whenever the user modifies the name of an identifier, all subsequent references are automatically
renamed. Third, when the user selects a specific intro pattern (e.g. for a destruct tactic), HenBlocks
automatically creates slots for the correct number of subgoals. Fourth, when the user selects a
constructor from the dropdown list, HenBlocks automatically creates slots for the correct number of
arguments.

Discussion. The main limitation of HenBlocks is the potential for visual clutter. Additionally, dragging
and dropping is slower than typing, and only a limited number of constructs/tactics are supported.
However, this limitation is somewhat mitigated by the fact that HenBlocks is intended for beginner users
and that users should have an “exit strategy” for transitioning to text editors [4]. The most pressing
future work involves rigorous user testing of HenBlocks to evaluate its effectiveness (e.g. via A/B testing).
Additionally, we need to develop HenBlocks further to support more tactics and constructs, and provide
more structured editing features. Lastly, there are user experience improvements that can be made.

In conclusion, we have made a novel contribution by applying fully-fledged structured editing to
proof writing. We have also developed advanced structured editing features by providing scoped variable
dropdown selection, automatic renaming, automatic slots for subgoals, and automatic slots for constructor
arguments. Fully-fledged structured editing is a promising approach to proof writing that warrants more
exploration, development, and testing.

Acknowledgements. This project would not have been possible without the supervision of Michael
D. Adams and his immense guidance and support. Additionally, this project has benefited from the
tremendous assistance of jsCoq co-author Emilio Jesis Gallego Arias, who provided technical advice and
helped experiment with new features. Part of the work published here is derived from a capstone project
submitted towards a BSc from, and financially supported by, Yale-NUS College, and it is published here
with prior approval from the College.

References

[1] Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and John C. Mitchell,
editors, Theoretical Aspects of Computer Software, pages 141-160, Berlin, Heidelberg, 1994. Springer Berlin
Heidelberg.

[2] Sebastian Bohne and Christoph Kreitz. Learning how to prove: From the coq proof assistant to textbook
style. FElectronic Proceedings in Theoretical Computer Science, 267:1-18, mar 2018.

[3] Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. A drag-and-drop proof tactic. In Proceedings of the
11th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2022, page 197-209,
New York, NY, USA, 2022. Association for Computing Machinery.

[4] Neil Fraser. Ten things we’ve learned from blockly. In 2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond), pages 49-50, 2015.

[5] Emilio Jestis Gallego Arias and Shachar Itzhaky. jscoq. https://coq.vercel.app/.

=

Valentin Robert. Front-end tooling for building and maintaining dependently-typed functional programs. PhD
thesis, University of California San Diego, 2018.

=

Blockly Developer Team. Blockly. https://developers.google.com/blockly.
[8] Hendrik Tews. Proof tree visualization for proof general. https://askra.de/software/prooftree/.


https://henblocks.github.io
https://github.com/henblocks/henblocks.github.io
https://coq.vercel.app/
https://developers.google.com/blockly
https://askra.de/software/prooftree/

