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Introduction. In a research in progress on a graph parameter, we came across two problems in which
the use of proof assistants turns out to be especially useful.

The first one concerns some long proofs, involving a large number of cases that can be checked mechani-
cally. In such cases the use of a proof assistant is convenient because readers or reviewers should not need to
check a large number of cases to be sure of the veracity of the corresponding results, and focus their attention
on those that could be more interesting or important to check or learn. An example of this is given by one
of the longest proofs ever formalized in Coq: the Four Color Theorem [2]. We recall that this theorem was
first proved by K. Appel and W. Haken and it had the peculiarity that it was necessary to prove thousands
of cases, called configurations, although this task could be carried out mechanically by a computer. Later,
the number of configurations was reduced to 633 but it is still a large number to be considered “manually
verifiable”. The formalization of such a result in a proof assistant such as Coq has the advantage of reducing
trust only to the proof assistant, without involving other software. That is, skeptical readers neither need
to trust in a program that checks all the configurations nor have to make their own program to convince
themselves of the correctness of the theorem, they only need to trust in the proof assistant.

The second one concerns the possibility of generating a certificate of a claim on the numerical value of a
given graph parameter. This idea came to our mind after knowing many works about optimization problems
in graphs where the authors give, for example, a new bound of some parameter that improves the existing
ones, but one has to trust what the authors claim. The generation of certificates has already been explored
in other contexts, e.g. Laurent Thery’s coqprime tool certifies the primality of big numbers.

The Maximum Weighted Irredundant Set (MWIS) problem. In order to describe our work in
more detail, we next introduce the considered problem.

Given a simple graph G = (V,E) and a vertex v ∈ V , we denote by N [v] the closed neighborhood
{u : (v, u) ∈ E}∪{v} of v. If v ∈ V and u ∈ N [v], then it is said that v dominates u. Given a set D ⊆ V and
a vertex v ∈ D, sD(v)

.
= N [v] − (

⋃
u∈D,u6=v N [u]) is the set of private vertices of v in D (it contains those

vertices only dominated by v). The set D is called irredundant if sD(v) 6= ∅ for all v ∈ D. In other words,
each vertex of D must dominate at least one vertex not dominated by any other vertex of D. The upper
irredundance number IR(G) is the maximum cardinality of an irredundant set in G. This parameter can be
generalized as follows: if a positive weight w(v) is associated with each vertex v of G, then the objective is to
find an irredundant set D such that

∑
v∈D w(v), i.e., the weight of D, is maximized. This is the parameter

associated with the MWIS problem, which is denoted by IRw(G). Its definition was previously formalized
in Coq/Ssreflect, as part of a generalization of the Cockayne-Hedetniemi domination chain [4], now part of
the graph library made by Doczkal and Pous [1].

Some complexity results on the MWIS problem are based on a transformed graph, denoted G′ = (V ′, E′),
which is defined in terms of G as follows: V ′ .

= {uv : u ∈ V, v ∈ N [u]} and E′ .
= {(uv, zr) : uv, zr ∈ V ′, uv 6=

zr, v ∈ N [z] ∨ r ∈ N [u]}. In particular, two complexity results require the proof of the following lemmas:

Lemma 1. G has a K1,3, a bull, a P6 or a C6 if and only if G′ has a K1,3.

Lemma 2. G has a co-paw, a G7
1, or a G7

2 if and only if G′ has a co-paw.

where the mentioned graphs are displayed in Figure 1. The sufficiency parts of these lemmas are rather easy
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Figure 1: a) The co-paw, bull, two graphs of order 7, C6 and P6, b) a K1,3 in G′ induced by a bull in G.

to prove (e.g., Figure 1(b) shows which K1,3 has G′ if G contains a bull whose vertices are enumerated as in
Figure 1(a)) but, on the contrary, we were unable to find simple proofs of their necessity parts. The current
proofs of the latter are based on a large number of cases that (although each one can be systematically
proved) makes it almost impossible to present a proper pen-and-paper version of them. Indeed, due to the
number of cases, it is difficult to be sure that all the possible cases are considered and that each of them is
tackled properly. It would be even harder for a reader to check such proofs.

Formalization. For the work in progress, we formalized several aspects of the MWIS parameter in
the folder mwis from [3] and, in particular, the two lemmas above. It consists of 7108 lines of Coq code
(ommiting blank lines and comments), most of which are devoted to proving only the necessity parts of
Lemmas 1 and 2, called G’clawfree rev and G’copawfree rev respectively. Other parts of interest of our
code are: the construction of the transformed graph G′ (see above) given in section TrfGraph construction,
the definition of the graphs of Figure 1 among others in section Graph definitions and the sufficiency parts
of Lemmas 1 and 2, called G’clawfree and G’copawfree respectively.

Certificates. On the other hand, we have devised a tool to generate a Coq file that certifies the so-
lution obtained for a given instance, see folder solver. Note that this feature is available thanks to the
formalization of the existing theory. The file mwis/check ir.v of [3] contains some functions and results
that allow us to check that a given irredundant set is indeed irredundant for a given graph, and has a certain
cardinality/weight depending on whether we want to get a lower bound of IR(G) or IRw(G). Finally, the
files in the folder certs contain the certificates generated by our tool for several instances used for bench-
marking purposes. For example, certs/myciel4.v has the definition of Mycielsky graph of order 23 (inst),
an irredundant set composed of 11 vertices (inst set), the same set as a list (inst list) and the proof that
IR(G) ≥ 11. Below, we display the statements that give rise to that result. The whole file is quite intuitive,
so much so that even a graph theorist who is barely familiarized with Coq can understand the main parts.

Fact inst list eq inst set : inst list =i inst set.

Fact inst set card : #|inst set| = 11.
Fact inst set is irr : @irredundant inst inst set.

Fact IR lb : IR inst ≥ 11.

Considering a list-version of the irredundant set allows us to prove some facts by computation.
We would like to thank the anonymous referees for their suggestions, in particular one of them dramati-

cally improved the checking time of certificates.
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