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Introduction The Coq extraction feature is essential for producing executable code in conventional
functional languages that can be integrated with existing components. Currently, Coq features extraction
into OCaml, Haskell and Scheme [2]. Nowadays, there are many new important target languages that are
not covered by the standard Coq extraction, moreover, the extraction procedure is written on OCaml and
is not verified. An example of a domain that experiences rapid development and the increased importance
of verification is the smart contract technology. We explored this direction and addressed the verification
issue in our previous work [1], where we presented an extraction pipeline based on MetaCoq’s verified
erasure. We would like to present an extension of our previous work with (i) an improved extraction
pipeline; (ii) a new target language Rust; (iii) a verified web application that can be extracted to Elm.

The pipeline Our pipeline is presented in Figure 1. The green items are our contributions (including
the previous work) and the items marked with ∗ are verified in Coq. Compared to [1], we have added a
pre-processing step to the pipeline at the Template Coq level, featuring new transformations (inlining,
case branch expansion). This step allows for extending the pipeline with new conversion-preserving
transformations at a low cost. We extensively use the features provided by the MetaCoq project in our
development [4]. We start by developing a program in Gallina that can use rich Coq types in the style
of certified programming. In the case of smart contracts, we can use the machinery available in ConCert
to test and verify properties of interacting smart contracts. We obtain a Template Coq representation
(which closely follows the actual kernel representation) by quoting the term. We then apply a number
of certifying transformations to this representation. This means that we produce a transformed term
and a proof term, witnessing that the transformed term is equal to the original in the theory of Coq.
The term in Template Coq is then translated to PCUIC.1 We obtain an erased term by applying the
verified erasure of MetaCoq and our erasure procedure for types. By λ�+, we mean the untyped calculus
of extracted programs (also part of MetaCoq), which we enrich with data structures required for type
extraction. From the λ�+ representation we can obtain code in one of the supported target languages.
In this work, we focus our attention on Rust and Elm (see more about smart contract extraction in [1]).
Our development is available on GitHub: https://github.com/AU-COBRA/ConCert

Extracting to Rust Rust is a mixed paradigm general-purpose programming language that features
many of the same concepts as functional programming languages (pattern-matching, higher-order func-
tions, a Hindley-Milner based type system, etc.). These features make Rust a suitable and relatively
straightforward target for printing from λ�+. However, Rust is a low-level language that gives a lot of
control. This also provides some challenges:

• For recursive data structures, e.g. lists, it is necessary to use indirection, otherwise, the size of the
data type would be infinite. We solve it by using Rust’s borrowed references.

• Closures do not behave uniformly as in Coq (e.g. making an array of closures is not directly
possible). Therefore, we allocate the closures and use trait objects to make the closures behave like
closures in Coq.

• Rust is an unmanaged language without a garbage collector. In several cases, like closures and
recursive data types, we need to manage memory manually.
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Figure 1: The pipeline

1Predicative calculus of cumulative inductive constructions, a “cleaned-up” version of the kernel representation [3]

https://github.com/AU-COBRA/ConCert


Currently, we solve it by using a simple region-based memory allocation. In principle, a different
off-the-shelf solution could be used.

• Partial applications are not supported in general, but can easily be emulated through closures. We
generate both a curried and an uncurried version of a function.

As an example, we provide Rust code for the standard Coq function
map : forall A B : Type , (A → B) → list A → list B

impl<’a> Program {
. . .
fn map<A : Copy , B : Copy>(&’a self , f : &’a dyn Fn(A)→ B , l : &’a List<’a , A>)→ &’a List<’a , B> {

match l {
&List : :Nil(_)⇒ { self .alloc(List : :Nil(PhantomData))} ,
&List : :Cons(_ , a , t)⇒ { self .alloc(List : :Cons(PhantomData , hint_app(f)(a) , self .map(f , t)))} ,
}}

fn map__curried<A : Copy , B : Copy>(&’a self)→ &’a dyn Fn(&’a dyn Fn(A)→ B)→ &’a dyn Fn(&’a List<’a , A>)
→ &’a List<’a , B> {

self .closure(move |f | { self .closure(move |l | { self .map(f , l)})})} }

We use the Fn trait for the type of closures and a hint_app wrapper to guide Rust’s type checking. We
generate two versions of the function: map is used if the fully applied case and map_curried – in case of
partial applications.

Rust can also be used as a smart contract language. Our development supports the integration of
the extracted code with the Concordium blockchain infrastructure.

Verified Elm web application Elm is a general-purpose functional language used for web development.
It is based on an extended variant of the Hindley-Milner type system and has all core features of functional
languages. As a demonstration, we develop an Elm-specific example in Coq: a simple web app inspired
by Elm guide.2 We define the application model in Coq in the following way.

Record StoredEntry := { seName : string ; sePassword : string }.
Definition ValidStoredEntry := { entry : StoredEntry | entry . (seName) 6= "" ∧8 ≤length entry . (sePassword) }.
Record Model :=
{ (** A list of valid entries such with unique user names *)

users : {l : list ValidStoredEntry | NoDup (seNames l)};
(** A list of errors after validation *)

errors : list string ;
(** Current user input *)

currentEntry : Entry }.

As one can see, users in our model are represented as a list of valid entries without duplication of names.
We apply the usual certified programming style in Coq (using Program) in order to implement the logic
of a web application that manipulates only valid data. That is, we implement a model update function
updateModel : StorageMsg → Model → Model ∗ Cmd StorageMsg that takes a user input of type StorageMsg,
a model instance and produces a new model and (potentially) a command, e.g. a server call. In our
examples, we do not use this functionality. We validate user input to construct valid data instances that
are used by the application’s logic. The Model type guarantees that only valid data can be stored.

We use our extraction pipeline to obtain a fully functional Elm web application (provided that the
rendering functionality — a view — is written directly in Elm).3 The generated application is well-typed
in Elm, even though we have used dependent types extensively. The Elm architecture guarantees that the
only way our model is updated is when users interact with the web application by calling the updateModel

function. Therefore, we know that in the extracted code the model invariant is preserved.
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2The Elm guide: https://guide.elm-lang.org/architecture/forms.html
3The demo of our extracted code is available at https://ellie-app.com/d2gtJ7WkB9Xa1
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