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Abstract

We propose a tactic for combining decision procedures using a black-box Nelson-Oppen scheme. The
tactic is instantiated for congruence and either lia or lra. The development is available at https:
//gitlab.inria.fr/fbesson/itauto.

1 Introduction

The Coq proof-assistant provides decision procedures for various logic fragments. In practice, most of the
goals do not fall in those restricted fragments and, in that case, an interactive proof is required. However,
there is sometimes a sweet spot when the goal can be solved by a collaboration of decision procedures. For
instance, intuition tac enhances the expressive power of a tactic tac by providing support for propositional
logic. Our recent itauto tac [3] shares the same goal but aims at improving the completeness and efficiency
of the combination.

Unfortunately, there is currently no support for solving goals that are expressed in the combined decidable
logic fragments of EUF [1] (Equality Logic with Uninterpreted Functions) and LIA [7] (Linear Integer
Arithmetic). Yet, congruence! [5] subsumes EUF and 1ia? [4, 2] solves LIA. Moreover, Nelson and Oppen [6]
propose a combination scheme which is complete for the combination EUF+LIA.

In the following, we present our smt tactic® which implements the Nelson-Oppen combination scheme in
a black-box manner.

2 Motivating Example

The crux of the Nelson-Oppen scheme is that equality sharing is sufficient? for a complete combination of two
decidable theories when the unique shared symbol is equality. The following example illustrates a somewhat
painful interactive proof that is automated by our smt tactic.

Example 1. Consider the following goal.
Goal ¥ (z y: Z) (P:Z -> Prop), © :: nil =y + 1 :: nil > P (xz - y) > P 1.

Neither congruence nor lta solves the goal. Yet, it can be solved by only asserting equalities that are solved
by either congruence or lia. This is illustrated by the following proof script.

Proof. intros. assert (z = y+1) by congruence. assert (z-y = 1) by lia. congruence. Qed.

3 Nelson-Oppen Algorithm

The first task of the smt tactic is the so-called purification phase which identifies terms that are shared
across theories. The second task consists in propagating equalities between pure terms until the goal is
solved. These two phases are implemented as an OCaml plugin.

Ihttps://coq.inria.fr/distrib/V8.13.0/refman/proofs/automatic-tactics/logic.html#coq:tacn.congruence
2https://coq.inria.fr/distrib/V8.13.0/refman/addendum/micromega.html#coq:tacn.lia
Shttps://gitlab.inria.fr/fbesson/itauto
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Purification The purification introduces fresh variables and equations so that every term belongs to one
and only one theory. For Example 1, we would obtain the following goal.

hprl : 1 = prl, hpr3 : y + prl = pr3, hpr2 : x - y = pr2

H : x :: nil = pr3 :: nil, HO : P pr2

P pri1

The set of potential equations is then defined as {x =y | (x,y) € Var x Var} where Var = {pr1l, pr2, pr3,x}.
The set of variables contains fresh variables but also the existing variables that are at the interface between
the two theories. Here, the variable x is an arithmetic variable using as argument of the constructor : :.

Theory Description In order to perform the purification phase, it is necessary to have the signature
of the theory that is combined with EUF i.e., the set of arithmetic types and operators. This is done by
declaring instances of the two following type-classes.

Class TheoryType(Tid:Type) (T:Type) :Type. Class TheorySig(Tid:Type){T:Type}(Op:T) :Type.

Note that the type-classes are parametrised by an uninterpreted type Tid that only used to identify a theory.
In our case, ZarithThy is associated to 1ia and RarithThy is associated to 1lra.

Equality Sharing Our current Nelson-Oppen tactic is binary and can combine congruence with either
lia or lra. After purification, we recursively try to prove one of the equality using either congruence or
the arithmetic tactic. If tactic T} succeeds at asserting an equation, we try to solve the goal using tactic T5.
If Ty fails, we iterate the process until none of the equation can be proved. As there is a quadratic number
of possible equations, the combination requires, in the worst case, a cubic number of calls to the decision
procedures.

4 Conclusion and Limitations

Our smt tactic improves automation and has the advantage of reusing the existing tactics congruence,
lia and lra in a black-box manner. More experiments are needed to assess to what extent automation
is increased in practice and whether efficiency is satisfactory. Improving efficiency would require to adapt
the decision procedures so that they either prove a goal or assert equations. Though this might not be
a problem in practice, our implementation is not complete. LIA is a so-called non-convexr theory which
requires propagating not only equalities but disjunctions of equalities. Moreover, 1ia is first running zify.
It is currently unclear how this impacts the Nelson-Oppen scheme.
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