
 1 / 1

Panel on libraries

The Coq Workshop 2020
online

Moderator: Bas Spitters

Andrej Bauer Cyril Cohen Robbert Krebbers
Guillaume Melquiond Anders Mortberg Karl Palmskog

Andrej Bauer (University of Ljubljana) – July 5, 2020

HoTT &
the Future of
Formalization
Panel discussion

• I started it because I did not understand what Vladimir
Voevodsky was doing in his Foundations library.

• I learned HoTT through formalization in Coq.

• The library would not exist without generous help from Hugo
Herbelin, Bruno Barras, Assia Mahboubi, Cyril Cohen, and
others.

• Support from Coq developers was essential.

• It has since grown beyond any expectations.

The HoTT library

The future?

• Encourage young people to formalize mathematics

• Do not assume 20th century formalisms are suitable for
formalized mathematics

• Educate mathematicians

• Build more & better tools

• Do not try to build the ultimate library.

• Do not worry too much about interoperability.

The Mathematical
Components Library

A short retrospective and design principles

Presented by Cyril Cohen,
for the Mathematical Components developers

https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp

A short retrospective of the core library
● 2005: Creation by Gonthier & Werner for proving The Four Color Theorem
● 2006: The Mathematical Components team, with support from MSR-Inria

joint center, settles to prove the Odd Order Theorem (Feit Thompson)
● 2006-12: USB drive → first svn commit on gforge.inria.fr
● 2008-04: First public release named ssreflect-1.1
● 2012-09: Completed The Odd Order Theorem and release of ssreflect-1.4
● 2014/2015: Switch to GitHub.com and separation between

○ ssreflect-1.5 The Small Scale Reflection tactic language
○ mathcomp-1.5 The Mathematical Components Library

● 2017-10: The SSReflect tactic language is included in Coq 8.7.0
● 2020-06: Latest release of mathcomp-1.11.0

Maintenance, design and engineering principles
● Compatibility over several Coq versions (8.7 → 8.12, for mathcomp 1.11.0)
● Mathematical Structures encoded by Packed Classes in Canonical Structures
● Only SSReflect + limited Small Scale Automation
● Policy on proof scripts:

○ Variables are always named explicitly, in introductions and generalizations (case, elim)
○ 1 line (≤ 80 char) = 1 reasoning step
○ 1 terminator (by, done, exact) = 1 closed subgoal
○ Rewritten frequently to use and test new features and styles
○ Interleave readable forward steps with compact procedural paragraphs
○ Goal: be maintainable (easy to repair)

● A focus on reasonably complete API (theories) and naming conventions
● No axioms in the main core repository, “classical reasoning” is encapsulated

by boolean predicates, eqType and choiceType.

Many related libraries and projects
● The Four Color Theorem (ported to “modern mathcomp” on 2019-04-25)
● The Odd Order Theorem (distributed separately from mathcomp library)
● Apery’s proof of irrationality of ζ(3)
● Shannon’s information theory
● Solutions to the POPLmark Challenge
● Mathcomp-Analysis: Classical analysis compatible with mathcomp
● Partial Commutative Monoids Library (FSCL-PCM)
● Various extensions (finite maps, elliptic curves, polyhedra, graphs, …)
● Various theorems (Sums of squares, QE on RCF, Grobner, Lindemann, ...)
● … and many more results in various domains (Real algebraic geometry,

Graph theory, Homology, Concurrency, Robotics, Modal logic, etc)

https://math-comp.github.io/papers.html

https://math-comp.github.io/papers.html

1

About me

Robbert Krebbers (TU Delft, The Netherlands)

▸ Active Coq user since 2010

▸ Mechanized efficient reals using the
math-classes and CoRN libraries (2010)

▸ PhD on mechanizing C (2011–2015)

▸ Lead-developer (with Ralf Jung and
Jacques-Henri Jourdan) of the std++ and
Iris libraries (2015–now)

▸ Nearly all my papers are mechanized in Coq

2

std++ “extended standard library”

▸ Focused on mechanization of PL research

▸ Large collection of definitions and lemmas for lists, sets, multisets, maps

▸ Type classes for notation overloading (∅, ∪, do notation, . . .)

▸ Type classes for properties like decidable equality, countability, finiteness, . . .

▸ Tactics for automation (set solver, naive solver, . . .)

▸ Axiom-free and dependency-free

▸ Uses setoids, but as little as possible

▸ Developed during my PhD (2011-2015)

▸ Now part of the Iris project with many external contributions

3

Iris “framework for concurrent separation logic”

▸ Comes with a tactic language for separation logic proofs (IPM/MoSeL)

▸ Highly extensible and parametrized

▸ Used in ca. 30 publications to prove a variety of properties (safety, refinement,
security, . . .) of a variety of languages (ML-like, Rust, Scala, C, . . .)

▸ Uses type classes and canonical structures for extensibility

▸ Uses ssreflect (mostly the rewrite tactic) and std++

▸ Developed by Ralf Jung, Jacques-Henri Jourdan, and me, with many external
contributors

4

Reflection on developing Coq libraries

Awesome things

◻3 The stability and quality of Coq releases is great

◻3 Coq is amazingly extensible (Iris would not be possible without that!)

Things that need improvement

◻7 Unification is unreliable (according to some Coq devs apply is obsolete /)

◻7 simpl/cbn are broken (a well-behaved simplification mechanism is crucial)

◻7 Type classes v.s. canonical structures (both have their issues)

◻7 Ltac (give me data types, opt-in instead of opt-out backtracking, exceptions, . . .)

◻7 Too many data types for the same thing (take the number types for example)

4

Reflection on developing Coq libraries

Awesome things

◻3 The stability and quality of Coq releases is great

◻3 Coq is amazingly extensible (Iris would not be possible without that!)

Things that need improvement

◻7 Unification is unreliable (according to some Coq devs apply is obsolete /)

◻7 simpl/cbn are broken (a well-behaved simplification mechanism is crucial)

◻7 Type classes v.s. canonical structures (both have their issues)

◻7 Ltac (give me data types, opt-in instead of opt-out backtracking, exceptions, . . .)

◻7 Too many data types for the same thing (take the number types for example)

Guillaume Melquiond

Maintained libraries

I Flocq: formalization of �oating-/�xed-point arithmetic.

I Coquelicot: formalization of classical real analysis.

I Gappa: automation for �oating-point arithmetic proofs.

I CoqInterval: automation for real analysis proofs.

I Why3: consistency of Why3's standard library.

Features

I About 200k lines of Coq.

I Backward compatibility as far back as 8.6�8.8.

I Licensed under LGPL or equivalent.

I Packaged using Opam.

Anders Mörtberg

About me:

Currently assistant professor in mathematics at Stockholm University

Started working with both Agda and Coq around 2010

Phd: developed CoqEAL library and formalized constructive algebra
using SSReflect/MathComp

Postdoc: made substantial contributions to the UniMath library

I’ve also developed multiple experimental proof assistants and
typecheckers for cubical type theories (cubical, cubicaltt, yacctt...)

Current work �

These days I’m mainly working on Cubical Agda—a fully fledged
dependently typed programming language for cubical type theory

Since 2018-10-15 I’ve been maintaining and developing a library with
Andrea Vezzosi called agda/cubical (by now 41 contributors, > 31k
LOC, 300 files):

https://github.com/agda/cubical/

Question: will there be a cubical mode for Coq?

https://github.com/agda/cubical/

Proof Engineering for Libraries

Quality of Libraries

mutation analysis can find
underspecified definitions

EngineeringSoftware/mcoq

Maintenance of Libraries

scripts/templates for automation can
assist maintainers

coq-community/templates

Coding Conventions

use tools to suggest lemma names
and spacing

EngineeringSoftware/roosterize

Regression Proving

Avoid reproving every proof in every
commit!

palmskog/chip

https://setoid.com - https://proofengineering.org

https://setoid.com
https://proofengineering.org

	Diapositiva 1

