Moderator: Bas Spitters

Andrej Bauer Cyril Cohen Robbert Krebbers
Guillaume Melquiond Anders Mortberg Karl Palmskog

I Panel on libraries

The Coq Workshop 2020
online

1/71

HolT &
the Future of
Formalization

Panel discussion

Andrej Bauer (University of Ljubljana) — July 5, 2020

The HoTT library

e | started it because | did not understand what Viladimir
Voevodsky was doing in his Foundations library.

e | learned HoTT through formalization in Coq.

* The library would not exist without generous help from Hugo
Herbelin, Bruno Barras, Assia Mahboubi, Cyril Cohen, and
others.

e Support from Coqg developers was essential.

* |t has since grown beyond any expectations.

The future?

* Encourage young people to formalize mathematics

Do not assume 20th century formalisms are suitable for
formalized mathematics

e Educate mathematicians
 Build more & better tools
Do not try to build the ultimate library.

* Do not worry too much about interoperabillity.

The Mathematical
Components Library

A short retrospective and design principles

Presented by Cyril Cohen,
for the Mathematical Components developers

https://github.com/math-comp/math-comp
https://github.com/math-comp/math-comp

A short retrospective of the core library

2005: Creation by Gonthier & Werner for proving The Four Color Theorem
2006: The Mathematical Components team, with support from MSR-Inria
joint center, settles to prove the Odd Order Theorem (Feit Thompson)
2006-12: USB drive — first svn commit on gforge.inria.fr
2008-04: First public release named ssreflect-1.1
2012-09: Completed The Odd Order Theorem and release of ssreflect-1.4
2014/2015: Switch to GitHub.com and separation between

o ssreflect-1.5 The Small Scale Reflection tactic language

o mathcomp-1.5 The Mathematical Components Library
2017-10: The SSReflect tactic language is included in Coqg 8.7.0
2020-06: Latest release of mathcomp-1.11.0

Maintenance, design and engineering principles

Compatibility over several Coq versions (8.7 — 8.12, for mathcomp 1.11.0)
Mathematical Structures encoded by Packed Classes in Canonical Structures
Only SSReflect + limited Small Scale Automation

Policy on proof scripts:

Variables are always named explicitly, in introductions and generalizations (case, elim)
1 line (= 80 char) = 1 reasoning step
1 terminator (by, done, exact) = 1 closed subgoal

Rewritten frequently to use and test new features and styles
Interleave readable forward steps with compact procedural paragraphs
Goal: be maintainable (easy to repair)

A focus on reasonably complete API (theories) and naming conventions
No axioms in the main core repository, “classical reasoning” is encapsulated
by boolean predicates, eqType and choiceType.

o O O O O O

Many related libraries and projects

The Four Color Theorem (ported to “modern mathcomp” on 2019-04-25)
The Odd Order Theorem (distributed separately from mathcomp library)
Apery’s proof of irrationality of (3)

Shannon’s information theory

Solutions to the POPLmark Challenge

Mathcomp-Analysis: Classical analysis compatible with mathcomp
Partial Commutative Monoids Library (FSCL-PCM)

Various extensions (finite maps, elliptic curves, polyhedra, graphs, ...)
Various theorems (Sums of squares, QE on RCF, Grobner, Lindemann, ...)
... and many more results in various domains (Real algebraic geometry,
Graph theory, Homology, Concurrency, Robotics, Modal logic, etc)

httpos://math-comp.qithub.io/papers.html

https://math-comp.github.io/papers.html

About me

Robbert Krebbers (TU Delft, The Netherlands)

» Active Coq user since 2010

» Mechanized efficient reals using the
math-classes and CoRN libraries (2010)

» PhD on mechanizing C (2011-2015)

» Lead-developer (with Ralf Jung and

Jacques-Henri Jourdan) of the std++ and
Iris libraries (2015-now)

> Nearly all my papers are mechanized in Coq

std++ “extended standard library”

» Focused on mechanization of PL research
> Large collection of definitions and lemmas for lists, sets, multisets, maps

» Type classes for notation overloading (@, U, do notation, ...)

» Type classes for properties like decidable equality, countability, finiteness, ...

» Tactics for automation (set_solver, naive_solver, ...)
> Axiom-free and dependency-free

» Uses setoids, but as little as possible

» Developed during my PhD (2011-2015)

> Now part of the Iris project with many external contributions

Iris “framework for concurrent separation logic”

» Comes with a tactic language for separation logic proofs (IPM/MoSel)
» Highly extensible and parametrized

» Used in ca. 30 publications to prove a variety of properties (safety, refinement,
security, ...) of a variety of languages (ML-like, Rust, Scala, C, ...)

» Uses type classes and canonical structures for extensibility
» Uses ssreflect (mostly the rewrite tactic) and std++

> Developed by Ralf Jung, Jacques-Henri Jourdan, and me, with many external
contributors

Reflection on developing Coq libraries

Awesome things
o The stability and quality of Coq releases is great
o Coq is amazingly extensible (Iris would not be possible without that!)

Reflection on developing Coq libraries

Awesome things
o The stability and quality of Coq releases is great
o Coq is amazingly extensible (Iris would not be possible without that!)

Things that need improvement
¥ Unification is unreliable (according to some Coq devs apply is obsolete @)
¥ simpl/cbn are broken (a well-behaved simplification mechanism is crucial)
¥ Type classes v.s. canonical structures (both have their issues)
¥ Ltac (give me data types, opt-in instead of opt-out backtracking, exceptions, . ..)
¥ Too many data types for the same thing (take the number types for example)

Guillaume Melquiond

Maintained libraries

» Flocq: formalization of floating-/fixed-point arithmetic.
» Coquelicot: formalization of classical real analysis.

» Gappa: automation for floating-point arithmetic proofs.
» Cogqlnterval: automation for real analysis proofs.
>

Why3: consistency of Why3's standard library.

Features
» About 200k lines of Cog.
» Backward compatibility as far back as 8.6-8.8.
» Licensed under LGPL or equivalent.
» Packaged using Opam.

(@]
we Sww 2/ Q
Anders Mortberg 2 wlééf”:
204 IS
/‘//7+S\ﬁ
About me:

@ Currently assistant professor in mathematics at Stockholm University
o Started working with both Agda and Coq around 2010

@ Phd: developed CoqEAL library and formalized constructive algebra
using SSReflect/MathComp

@ Postdoc: made substantial contributions to the UniMath library

@ |'ve also developed multiple experimental proof assistants and
typecheckers for cubical type theories (cubical, cubicaltt, yacctt...)

Current work

These days I'm mainly working on Cubical Agda—a fully fledged
dependently typed programming language for cubical type theory

Since 2018-10-15 I've been maintaining and developing a library with

Andrea Vezzosi called agda/cubical (by now 41 contributors, > 31k
LOC, 300 files):

https://github.com/agda/cubical/

Question: will there be a cubical mode for Coq?

https://github.com/agda/cubical/

Proof Engineering for Libraries

Quality of Libraries Maintenance of Libraries

m mutation analysis can find m scripts/templates for automation can
underspecified definitions assist maintainers
m EngineeringSoftware/mcoq B cog-community/templates

Coding Conventions

Regression Proving

m use tools to suggest lemma names m Avoid reproving every proof in every
and spacing commit!
m EngineeringSoftware/roosterize m palmskog/chip

https://setoid.com - https://proofengineering.org

B

https://setoid.com
https://proofengineering.org

	Diapositiva 1

