
Experience Report: Smuggling a Little Bit of Coq
Inside a CAD Development Context

Dimitur Krustev

IGE+XAO Balkan

6 July 2020 / Coq Workshop 2020

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 1 / 13

Outline

1 Introduction

2 When We Use Coq
Example: A* Search

3 How We Use Coq

4 Why We Use Coq

5 Conclusions

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 2 / 13

Introduction

Introduction

IGE+XAO – a company working on electrical CAD software for
almost 35 years

a part of Schneider Electric since 2018

Quality assurance based on a combination of widely used
standard techniques
However, we found formal verification using Coq useful in certain
specific circumstances

why
when
how

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 3 / 13

Introduction

Company – Products

IGE+XAO – focus on electrical CAD systems, since 1986
Solutions for several domains

Transport equipment manufacturing
(Aircraft, Trains, Ships, Automotive)

system design of electrical
installation
cable harness routing
cable harness manufacturing
. . .

Equipment, Machinery, Plant
Automation

schematic editors
3D Electrical Panel Design
. . .

Construction

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 4 / 13

Introduction

Company – Products

IGE+XAO – focus on electrical CAD systems, since 1986
Solutions for several domains

Transport equipment manufacturing
(Aircraft, Trains, Ships, Automotive)

system design of electrical
installation
cable harness routing
cable harness manufacturing
. . .

Equipment, Machinery, Plant
Automation

schematic editors
3D Electrical Panel Design
. . .

Construction

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 4 / 13

Introduction

Company – Products

IGE+XAO – focus on electrical CAD systems, since 1986
Solutions for several domains

Transport equipment manufacturing
(Aircraft, Trains, Ships, Automotive)

system design of electrical
installation
cable harness routing
cable harness manufacturing
. . .

Equipment, Machinery, Plant
Automation

schematic editors
3D Electrical Panel Design
. . .

Construction

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 4 / 13

Introduction

Company – Organization

R&D departments in several countries
France, Poland, Bulgaria, Denmark, Tunisia

Technologies used in recent years
majority of code still in C++
new projects based on .NET – mostly C#
more recently, F# also used in .NET projects

QA – standard methods, expected to give best cost/quality ratio
unit/automated/manual tests
code reviews
code linters

F# in our technology stack
faster to prototype domain-specific algorithms
immutable by default – easier to write correct parallel code
luckily, OCaml code extracted by Coq mostly usable as F# code

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 5 / 13

When We Use Coq

When We Use Coq

Tricky generic algorithms – not in standard libraries – with
disproportionately high impact on final quality
Stable specification, easy to formalize

Domain-specific
Algorithms

Business Logic

Standard
Libraries

Generic
Algorithms &

Data
Structures

Rare small examples in Coq
(apply "patches" to electrical
design documents)

Best Area for Coq:
● graph algorithms (A* search,

length-preserving tree layout, B&B
TSP, ...)

● data structures (union-find, priority
queues, ...)

● PL-related (a single exception)

Research work, not directly related to our production, is not
discussed here

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 6 / 13

When We Use Coq Example: A* Search

Example: A* Search – Context

Context: a tool for
automatically
drawing wiring
diagrams

SHIELDINGDAISYCHAIN WIRE '2191-0136' IS NOT REPRESENTED BECAUSE THE EXTREMITIES ARE NOT PART OF THIS ''.

 00061 DR24

 00062 DR24

 00063 DR24

 00064 DR24

 1 DR24

 00072 DR24

 3 DR24

 00074 DR24

 00081 DR24

 00082 DR24

 00083 DR24

 00084 DR24

 0125RD

 0148RD

 0149RD

 0150RD

 0016

 0017

 0020

 0134 DR22

 0158 22

 0161 22

40RT1

TT0003-TB0011

TT0003-TB0020

TT0003-TB0020

TT0003-TB0020

TT0003-TB0020

40RT1;J2;HP

40RT1;J2;HP

4

3

2

1

5

17

19

15

21

22

23

1

2

3

13

14

15

5

6

7

9

10

11

0007

CUSTOMER : t6 REVISION DATE : 28-Jun-2020 MSN : 001 DATE OF PRINT : 28-Jun-2020 14:0 A1

We needed a customized version of A* Search in order to find wire
routes during diagram generation

to have more generic API (e.g. arbitrary edge weights)
to fine-tune performance (e.g. LIFO tie-breaking)
⇒ an in-house implementation

Subtle correctness arguments
Key infrastructure for the whole product
⇒We chose verification in Coq as main QA approach

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 7 / 13

When We Use Coq Example: A* Search

Example: A* Search – Specification� �
Fixpoint CorrectRouteHelper (start: Node) (endNode: Node) (w:

Weight) (path: list Node) : Prop :=
match path with
| nil => start = endNode ∧ w = weightZero
| node::path => ∃ w’, In (endNode, w’) (neighbors node)
∧ ∃ w’’, CorrectRouteHelper start node w’’ path
∧ w = weightAdd w’’ w’ end.

Definition CorrectRoute (start: Node) (route: Node · Weight ·
list Node) : Prop :=

let ’(endNode, w, path) := route in
isGoalNode endNode = true ∧ NoDup (endNode::path)
∧ CorrectRouteHelper start endNode w path.

Theorem Astar_CorrectRoute: ∀ start route,
Astar start = Some route→ CorrectRoute start route.� �

Relatively simple and not expected to change in the future
Trade-off: only check result route correctness, not optimality

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 8 / 13

When We Use Coq Example: A* Search

Example: A* Search – Evaluation

Time spent on A* Search verification (∼40h) only slightly longer
that what would be needed to create initial implementation in F#
with enough unit tests
A* in Coq→ A* in F# ⊂Wiring Diagram Generator (WDG) ⊂
Electrical Diagram Visualizer (EDV)
Top-level product extensively tested during 2 years:

Language Lines of code Issues
Impl. Proofs Cmts. Issues

A* Coq 173 203 29 0
A* (extracted) F# 39 - - 0
WDG C# + F# 108K - - 400+
EDV C# + TypeScript - - - 800+

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 9 / 13

How We Use Coq

How We Use Coq

Main goal: keep cost/quality ratio competitive with respect to other
QA methods
Avoid using tools/libraries not coming with the standard Coq
installation
Use built-in extraction to produce executable code

major enabler: we already use a language – F# – which is (mostly)
compatible with Coq extraction
functional programming techniques already used in production –
mostly because they make parallel programming easier

Code verified in Coq typically tiny in size and stable over time
⇒ so far, we can avoid Coq integration in automatic build process;
integrating extracted code manually instead

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 10 / 13

How We Use Coq

Extraction: Technical Issues

F# is compatible with OCaml core, but some features in extracted
code are problematic

F# module system very limited⇒ avoid using modules
no higher-kinded types⇒ manual tweaking and/or some
workarounds in Coq:� �

Record FinSetOps (A: Set) := { FinSet: Set; empty: FinSet;
add: ∀ (A_dec: ∀ x y: A, {x = y} + {x <> y}), A→ FinSet→ FinSet;
contains: ∀ (A_dec: ∀ x y: A, {x = y} + {x <> y}), A→ FinSet→ bool

; ... }.
Variable fsOps: FinSetOps Node.� �

higher-kinded type “hidden” in extracted code:� �
. . . l e t closedSet ’ = fsOps . add node_dec node closedSet . . .� �

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 11 / 13

Why We Use Coq

Why We Use Coq

The use of Coq – for certain use cases – provides tangible net
benefits in the long term1

short-term extra investment – need to spend time in doing proofs
short-term result – a 100% guarantee that the specification is
respected (typically impossible with other QA methods)
long-term gains – no need to repeatedly deal with bugs, which
inevitably appear regularly in tricky unverified code

typically far outweigh the short-term investment required

Due to the nature of our products, use of formal verification can
bring sufficient benefits only in a small number of situations, but
the impact on quality is disproportionately high

1assuming availability of competent Coq users
Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 12 / 13

Conclusions

Conclusions

Using Coq to formally verify selected parts of the code can be
highly beneficial – in certain use cases – even for standard
off-the-shelf software

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 13 / 13

Bonus Example: Tree Layout Preserving Lengths

Early success (c. 2013)
Context: Prepare cable harnesses
for manufacturing on a table
We found some existing
algorithms designed for another
domain (bioinformatics) –
Bachmaier et al. 2005

1M B1

1MB3

1M
B9

1M
B23

1M
B17

1M
B21

1M
B18

1MB20

1M
B7

1M
B5

1M B4

1MB1
0

1MB14

1M
B16

1MB1
5

1MB12

1M
B11

1M
B6

J1
40RT

2;J1;
HP AC

40RT1;J2;
HP

40RT1;J2;H
PAC

J0024J0024

GC0002GC0002

S1.E
Q6;J

2;HP

S1.E
Q6;J

2;HP

AC S1.E
Q6;J

1;HP
S1.E

Q6;J
1;HP

AC

S1.EQ7;J1
;HP

S1.EQ7;J1
;HP

AC

They needed adaptation for our domain
⇒We successfully used Coq to verify our customized algorithm� �

Lemma layoutCountedTree_preservesLengths: ∀ ND ED getLen
getCnt (t: Tree ND ED) a1 a2 x y, let t1 := layoutCountedTree
getLen getCnt t a1 a2 x y in ∀ nd1 x1 y1 ed nd2 x2 y2, List.In
((nd1, (x1, y1)), ed, (nd2, (x2, y2))) (treeEdges t1)→ (Rsqr (
getLen ed) = Rsqr (x2 − x1) + Rsqr (y2 − y1))%R.� �

Dimitur Krustev (IGE+XAO Balkan) Smuggling a Little Bit of Coq Coq Workshop 2020 1 / 1

	Introduction
	When We Use Coq
	Example: A* Search

	How We Use Coq
	Why We Use Coq
	Conclusions
	Appendix

