
Towards an Axiomatic Basis for C++

Gregory Malecha, Abhishek Anand, and Gordon Stewart

BedRock Systems, Inc. {gregory,abhishek,gordon}@bedrocksystems.com

Applying formal methods to mainstream languages is crucial to expanding their adoption.
To this end, we describe our work on bringing verification to C++. We develop a tool, cpp2v,
that converts C++ programs into abstract syntax in Coq, which we then give meaning to by
an axiomatic semantics. cpp2v leverages the clang (http://clang.llvm.org) compiler infras-
tructure to isolate some complexities of C++ (e.g., compile-time features) without enlarging
our TCB. Where it’s necessary to give semantics to runtime behavior, we use reasoning princi-
ples that capture the common uses of features, choosing pragmatically to underspecify patterns
(e.g., Duff’s device) that are legal but uncommon. We conclude by summarizing the ways we’ve
used the semantics so far and discuss future work.

Our tool and the accompanying Coq development is available online: https://github.

com/bedrocksystems/cpp2v.

1 A Syntax

C++ has accrued many features since C. These divide cleanly into two categories: Compile-
time features such as templates, auto, and constexpr, which are elaborated at compile time;
and runtime features such as value categories, inheritence, and concurrency primitives, which
enhance the dynamic semantics of the language.

Picking cpp2v’s C++ AST to closely resemble clang’s C++ IR allows us to offload many of
the compile-time features of C++ to clang. For example, clang’s AST already includes overload
resolution information, makes constructor calls explicit, and handles the complexities of type
and value-category inference.

In addition, many features that seem like runtime features are defined in the standard by
their desugaring, thus they can be elaborated away by clang. For example, “foreach” loops
(C++11) are defined by expanding to a for-loop using begin, end, and the pre-increment
operator. Also, new features such as auto and constexpr are easily desugared into code.

2 An Axiomatic Semantics

When systems are highly nondeterministic, their operational models (e.g. small-step operational
semantics) become complex as well. Rather than defining an operational model of C++, we
build an axiomatic one. In our experience, the axiomatic approach tends to expose more
modular structures of the underlying language than we see in purely operational models. In
addition, it maps well to features of C++ such as address resolution that might be awkward
to model operationally. Outside of C++, we have seen this approach employed repeatedly for
example the VirtIO specification [5] describes the proper way to interact with VirtIO devices in
an axiomatic style rather than attempting to describe the system operationally. As in projects
like VST [1], we use separation logic, which we define in cpp2v on top of the Iris framework [2].

We build the semantics as a logic (called mpred) over Iris’s iProp and enrich it with ghost
state that models the state of the C++ abstract machine. To model the fact that the address
of any variable can be taken, we represent program variables uniformly as resources within

http://clang.llvm.org
https://github.com/bedrocksystems/cpp2v
https://github.com/bedrocksystems/cpp2v


Towards an Axiomatic Basis for C++ Malecha, Anand, and Stewart

(* program, invariant mask, thread-local information, activation record *)

Context {σ : genv} {M : coPset} {ti : thread_info} {ρ : region}.
(* expression evaluation *)

Parameters wp_lval wp_prval wp_xval : Expr → (val → FreeTemps → mpred) → mpred.
(* initializing expressions, e.g. constructors *)

Parameter wp_init : type → val → Expr → (FreeTemps → mpred) → mpred.
(* initialization lists, e.g. :field(a,b,c) *)

Parameter wpi : globname → val → Initializer → (mpred → mpred) → mpred.
(* "de-initialization" lists *)

Parameter wpd : globname → val → FieldOrBase∗obj_name → mpred → mpred.
(* statements *)

Parameter wp : Stmt → Kpreds → mpred.

Figure 1: The weakest (liberal) precondition definitions axiomatized in our model

the separation logic. This is a departure from VST’s Verifiable C, which uses CompCert to
distinguish address-taken local variables from temporaries.

Our semantics gives weakest (liberal) precondition assertions for the expression evaluation
modes of the C++ abstract machine, for statements, and for initialization. The types of these
assertions are summarized in Figure 1. Because they are parameters, we provide axioms to
reason about them (not shown). For soundness, we underspecify unsupported operations, such
as virtual function calls, which we define to have a weakest precondition of False.

3 Current & Future Work

The current version of cpp2v is a first step towards a verification toolchain for C++, but more
work remains. To date, we have used cpp2v and the accompanying semantics to specify func-
tional correctness of several concurrent libraries and are using it to teach systems programmers
to write specifications and to reason about their programs. To that end, we are developing,
and iteratively improving, automation and applying it to real-world programs.

Solidifying the Semantics. We aim to develop a semantics that is compatible with the
C++ standard, but we are aware of some situations in which our current semantics deviates
from the strict behavior of the standard. For example, our simplified memory model is inspired
by CompCert’s, which doesn’t fully model the strict aliasing rules of C and C++. In practice,
we avoid this incompatibility by compiling our code with -fno-strict-aliasing but a more
complete treatment of the C++ memory model in the style of Krebbers [3] would be a more
foundational way to inter-operate with modern compilers.

Language Features. Beyond solidifying the semantics, we are also working on extending
them with choice features. virtual functions 1 is highest on the list because, while infrequently
used, there are places where they significantly simplify code. Reasoning about templates pre-
instantiation is a longer term goal, but the late-resolution nature of C++ templates makes it
difficult to do so in a modular fashion. Concepts, a feature of C++20, might be a way to
address this, but more research is necessary to understand that. In the meantime, we rely on
reusable proof scripts to verify the most basic uses of C++ templates.

1Ramananandro [4] contains a Coq formalization of C++’s object system.

2



Towards an Axiomatic Basis for C++ Malecha, Anand, and Stewart

References

[1] A. W. Appel. Program Logics for Certified Compilers. Cambridge University Press, 2014.

[2] R. Jung et al. “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reason-
ing”. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages - POPL ’15. The 42nd Annual ACM SIGPLAN-SIGACT
Symposium. Mumbai, India: ACM Press, 2015, pp. 637–650.

[3] R. Krebbers. “The C standard formalized in Coq”. PhD thesis. Radboud University Ni-
jmegen, Dec. 2015.

[4] T. Ramananandro. “Mechanized Formal Semantics and Verified Compilation for C++
Objects”. An optional note. PhD thesis. Université Paris Diderot (Paris7), July 2012.

[5] Virtual I/O Device (VIRTIO) Version 1.1. Standard. OASIS Committee Specification,
Dec. 2018.

3


	A Syntax
	An Axiomatic Semantics
	Current & Future Work

