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Introduction. Bilinear pairings have become popular for deploying privacy-preserving cryp-
tocurrencies, as they represent a fundamental building block for the zero-knowledge proofs re-
quired for security. ZCash is a clear example of this trend, where pairing-based zero-knowledge
Succint Non-Interactive Arguments of Knowledge (zk-SNARKs) underlie private shielded trans-
actions [8]. Another example of application of pairing-based protocols comes from the Chia
blockchain, where Boneh-Lynn-Shacham (BLS) [10] signatures were adopted for improved smart
transaction support.

There has been substantial progress in the past decade towards selecting parameters [6, 4,
5] and implementing pairing-based cryptography efficiently in software [3]. However, current
record-setting implementations rely on hand-optimized architecture-specific Assembly code for
the underlying field arithmetic and a great deal of manual tuning to unlock the best performance
across a range of architectures. This introduces low-level code which is both hard to audit and
to verify as correct, and a number of cryptographic libraries have suffered with simple bugs as
a direct consequence [12].

Due to its many optimizations efficient code can be hard to verify in a post hoc way. Re-
cently, an alternative path for implementing cryptographic libraries was demonstrated as viable
in the Fiat-Crypto framework [12]. By combining correct-by-design optimized low-level code
with automatically generated and formally verified high-level code, it became possible to de-
velop libraries which are both efficient and formally verified. The approach was illustrated
through the implementation of field arithmetic for several standardized elliptic curves using an
extensible code generation framework, capable of producing code competitive in performance
with popular hand-optimized multi-precision libraries [12]. The verification steps are conducted
using the Coq proof assistant, a state-of-the-art theorem prover [11]. Such high assurance cryp-
tographic implementations have recently been adopted by the industry: Google’s BoringSSL
on Fiat-Crypto [12], Firefox on Evercrypt [13], and the WireGuard VPN on both. A SHA-3
implementation was made using Jasmin [1], another framework for developing high-speed and
high-assurance cryptographic software.

Contributions. We implement a verified and improved version of the constant-time (i.e.,
its runtime does not depend on input) algorithm from [9] in the Coq proof assistant and use
Fiat-Crypto to generate an efficient implementation in C.

The inversion algorithm. The inversion algorithm [9] we have implemented is a constant-
time variant of the Extended Euclidean Algorithm. It consists of a constant amount of iterations
of a so-called division step. Each of these division steps consists of a conditional swap and a few
arithmetical operations including a shift, a negation and an addition. There are two variants
of the inversion algorithm utilizing this division step, one of which is significantly faster.

Fiat-Crypto. Fiat-Crypto is implemented and verified in the Coq proof assistant [11]. Fiat-
Crypto embeds a small C-like language in the general logical framework of Coq and makes a
provable connection between mathematical definitions and the generated efficient code in C or
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Rust. This allows us to implement the inversion algorithm as long as we restrict ourselves to
primitives contained in the specified C-like language.

Implementation. We implemented the two variants of the constant-time algorithm from [9]
in Fiat and use the framework to generate a verified and constant-time field inversion. To do
this, we extended the library with a few methods including shifting of large integers.

The implementation allows for inversion modulo any prime, in particular for primes used
in pairing-based cryptography. We illustrate our approach with the BLS12-381 curve used in
ZCash as an efficient instantiation for pairings at the 128-bit security level1.

We have proved functional correctness of the division step in the inversion algorithm from [9].
In future work, we will prove that when iterated this step actually computes the field inverse.
This, however, requires reasoning about real and 2-adic numbers, which needs several additional
libraries. The loop which iterates the division step is also not generated by Fiat, since loops
are not yet supported; at the moment one has to write the loop around the generated C-code
oneself. We are working on automating this. The code is available at https://github.com/

bshvass/fiat-crypto (our contribution is approx. 1500 lines of code).

Benchmarks. The generated code was integrated in the RELIC toolkit [2], a cryptographic
library containing a state-of-the-art implementation of pairings. RELIC uses a combination
of hand-written Assembly with higher-level C-code, and has been used by cryptocurrency and
blockchain projects. For example, it has been adopted by the Chia project for BLS signatures,
by the Brave browser for the Basic Attention Token (BAT) blockchain, and used for generating
test vectors for the ZCash implementation of pairings in Rust.

Integrating the code with RELIC allowed convenient benchmarking to compare the efficiency
of our approach with other field inversion algorithms already implemented in the library. The
results are summarized in the following tables (where the second and last entries corresponds
to this work):

Algorithm Verified Auto generated Leaks Cycles
Bernstein-Yang (fast) [9] No No length of p 32,384
Bernstein-Yang (fast) [9] Yes Yes length of p 87,733

Extended Euclidean No No p and input 157,870
Fermat’s Little Theorem No Partially p 296,302

Bernstein-Yang [9] No Partially length of p 305,924
Bernstein-Yang [9] Yes Yes length of p 309,150

Table 1: Cycle counts for field inversion measured on an Intel Core i7-8650U CPU running at
1.90GHz with HyperThreading and TurboBoost disabled.

In the tests, p was always chosen to be the BLS12-381 prime, but Fiat can generate the
algorithm for any desired prime. Thus, our verified and constant-time auto-generated imple-
mentation is approximately only half as fast as an insecure competitive implementation. This
is reasonable for uses where security and correctness are indispensable.

Future work To fully generate the implementations, one would need to extend Fiat with
loops. Furthermore, one could extend the supported language of Fiat to be able to use more
efficient C primitives which would speed up all its generated implementations. To obtain a fully

1https://electriccoin.co/blog/new-snark-curve/
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verified, and constant time, compilation to Assembly, we would like to use the CompCert [7]
verified C-compiler, but at the moment this does not support some GCC extensions which
Fiat-Crypto relies on (128-bit integer types in particular).
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