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1 Introduction

One of MathComp’s main strengths is its ability to interpret a set of elements of a type fulfilling a given
predicate as a regular type. Those types are organized as a hierarchy of structures verifying a set of properties:
having decidable equality, having a choice function, being countable, and finiteness.

The MathComp library already provides ways to combine such structures using the classical sum and
product operators, but the standard library does not provide any support for recursive types. Recursive
types indeed usually lose the properties of their carrier types unless some finiteness properties are added.

We introduce two new types for explicitly bounded sequences and trees. We then study another, implicit
way to bound the size of such types, by putting a constraint of no repetition along paths. This is typically
used in program verification theory to limit the size of an abstract control stack.

2 Bounding sequences

2.1 Syntactically bounded sequences

MathComp already contains a type for sequences of exactly a given length, called tuple, which inherits the
finiteness property of any finType used for the elements. We have developed Wlist, the type of lists (seq, in
MathComp’s nomenclature) bounded by a given nat. Unlike tuple, Wlist is not defined using a signature
type, but an inductive:

Inductive Wlist (X: Type): nat -> Type :=
Bnil : forall n, (Wlist X n)

| Bcons : forall n, X -> (Wlist X n) -> (Wlist X n.+1).

The finiteness of Wlist A n, where A is a finType and n a nat, is shown via induction. In the induc-
tive case, a Wlist A n+1 is simply transformed as an element of type unit + (Wlist A n * A) using the
following function:

Equations ff (n : nat) (x : Wlist A n.+1) : (unit + A * Wlist A n) :=
ff (Bnil _) := inl tt ;
ff (Bcons a l) := inr (a,l).

This function uses [1], as the usual match failed to deal with the n argument. The sum or product of
two finTypes is a finType itself, and the finiteness of Wlist A n is the induction hypothesis. The proof is
shorter and simpler than the one for the finiteness of tuple. This probably stems from the fact that it is
less precise, as we do not explicitely state or prove the cardinal of Wlist.

Using this type in practice can be cumbersome, as adding an element to a Wlist bounded by nat m would
build a Wlist m+1, even though there may actually be much less than m+1 elements in the list. We wrote
functions that map elements of Wlist to usual sequences, and the other way around. In the second case,
elements from the list can be lost if it was too long. However, we also wrote cancellation lemmas relying
on properties about a given sequence’s length. This controlled back and forth allowed us to use Wlist in
practice, at the reasonable cost of tracking the size of the studied lists explicitly.



Lemma wlist_seqK (l : Wlist X m) : (seq_to_wlist m (wlist_to_seq l)) = l.
Lemma seq_wlistK (l : seq X) (H : size l <= m) : (wlist_to_seq (seq_to_wlist m l)) = l.

2.2 Sequences with unicity

We introduce a signature type, called uniq_seq, of sequences with unicity. It is shown that a uniq_seq
over a finType A can be injected into a tuple of length bounded by #|A|, ie. the cardinal of A, which grants
us finiteness. We provide two functions that add an element x at the head of an uniq_seq l. The first
requires a proof of x \notin l to build a proof of uniq (x :: l). The other function uses sumbool to
check whether x \notin l, and extracts a proof if it is the case. If not, it simply returns l.

3 Bounding trees

3.1 Syntactically bounded trees

Using Wlist, we define the type of trees with a bounded height and number of successors, called Htree.
This type is also defined using Inductive, its finiteness is shown similarly to that of Wlist, and [1] was also
used, this time to map Htree to a general, unbounded tree type.

3.2 Semantically bounded trees using unicity

Having two different syntactic bounds makes the use of Htree quite tedious. Bounding the number of
successors of nodes was not a problem in our use case, so we only had to deal with the height. Our trick is
again to use unicity, by showing that trees over finType A with at most n successors and unicity across paths
are a subtype of trees with a most n successors and a height of #|A|, making it a finType.

Trying to get this result directly proved tricky, it was easier to show a more general lemma stating that
a tree with unicity and elements forming a subset of E had a height bounded by |E|. Replacing E by A, the
subset condition is trivially true and we have our desired result. As for uniq_seq, we developed an insertion
function that takes as an argument a proof of the absence of the top element in the given subtrees.

4 Conclusion and perspectives

MathComp provides a lot of useful meta theorems on types verifying properties ranging from the existence
of a decidable equality to finiteness or simply being countable, but proving those properties can be tedious.

The finiteness proofs mentioned here rely on the fact that if a type T can be injected in a finite type
F then T is also finite, on the preservation of finiteness by sums and products, and on the existence of a
natural correspondence from non recursive datatypes with a given sum of products of more elementary types.
Working on these finTypes, which we needed for another project, led us to work on a tactic that automates
the simplest cases of derivation of "MathComp properties" from any user-defined type.

This work is still in very early stages, and more involved than expected. In particular, abstracting
finTypes is made difficult by their encapsulation. We will discuss this point and present our current leads.
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