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1 Inria and CMAP, CNRS, École Polytechnique, Institut Polytechnique de Paris, France
2 Inria, Université Côte d’Azur, France
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Overview Up to version 1.10.0, the Mathematical Components (MathComp) library [6] lacked
ordered structures. Because of its applications (see below), this library must be integrated
with the rest of MathComp structures and provide partially and totally ordered types, meet-
semilattices, non-distributive and distributive lattices respectively called porderType, orderType,
meetSemilatticeType, latticeType, and distrLatticeType in Figure 1. Some types must have
several ordering: e.g., products have point-wise and lexicographic orderings, and any ordered
type (T,≤) has its dual (T,≥). We develop such a library using the packed classes methodol-
ogy [4], which we extend with a display mechanism, in order to address the latter requirement.
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Figure 1: Structures with solid borders are in MathComp 1.11, others are the work-in-progress.
fin, b, t, and c, respectively denote finiteness, the existence of bottom, top, and complement.

Displays With canonical structures a given carrier may have at most one instance of each
structure. The MathComp way to deal with this shortcoming is to create a canonical instance
on an alias. However, operators of two structures on the same carrier are printed in the same
way, which is confusing. To solve this problem, we introduce the notion of display, which is an
extra parameter to a structure, and which is only used for pretty-printing purposes. They are
opaque elements of type unit, exactly like keys in MathComp. The user can then tune their
notations to print operators in a different way depending on the value of the key.

For example, the structure porderType has signature unit → Type, and the operator le has
type ∀ (disp : unit) (T : porderType disp), rel T. If P is a preorder with display d, the alias
dual P := P is canonically a preorder with display dual_display d, and we have the notations

Notation "x ≤ y" := (@le _ x y) : order_scope. (* default display *)
Notation "x ≤^d y" := (@le (dual_display _) x y) : order_scope. (* default dual display *)

where x ≤^d y is convertible to y ≤ x and dual_display : unit → unit is an opaque function.
Thus, (≤ : rel nat) and (≤ : rel (dual nat)) are respectively interpreted as the “less

than or equal to” relation of nat and its dual, and printed as ≤ and ≤^d. This interpretation
is done by looking up the table of canonical instances indexed by head symbols of carriers such
as nat, dual, and other types and aliases. As of now, displays are printing-only: input must be
done through explicit type annotations. Future plans include accepting them as input too, but
the infrastructure is so heavy that it would require a modification of the automated hierarchy
builder tool [3].
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Definitionally involutive duals We present a new instance of forgetful inheritance [1], that
is, definitionally involutive dual ordering, a work-in-progress feature of MathComp. Since the
fundamental idea of forgetful inheritance is implementing inheritance by inclusion rather than
construction, we redefine the mixin record of porderType as a primitive record that includes
all the dual axioms as in Figure 2. Consequently, the construction of dual can be done by
transposing axioms to their duals, and iterating it twice becomes a definitional identity function.
But this change does not break user code, because the old mixin record has been redesigned as
a factory [1, 3] to implicitly derive an actual mixin instance by coercion.

Since displays are opaque and prevent us to make duals definitionally involutive, we also
have to make dual_display transparent, while CoqMT [5] may help us to extend conversion
with an equation dual_display (dual_display disp) = disp. Doing so allows, for example, to
ease the reduction of the definition and properties of coatoms of a lattice to the ones of atoms
in the dual lattice. Indeed, when doing so, it is not rare that one has to deal with duals of
duals, and in that case, has to use type casts for converting back elements in the dual of the
dual of a lattice to that lattice. Now that the dualization of lattices is definitionally involutive,
all these type casts can be removed.

Record POrder.mixin_of := Mixin {
le : rel T; lt : rel T;
lt_def : ∀x y, lt x y = (y 6= x) && le x y;

refl : reflexive le;
anti : antisymmetric le;

trans : transitive le; }.

Set Primitive Projections.
Record POrder.mixin_of := Mixin {
le : rel T; lt : rel T;
lt_def : ∀x y, lt x y = (y 6= x) && le x y;
lt_def’ : ∀x y, lt y x = (y 6= x) && le y x;
refl : reflexive le;
anti : antisymmetric le;
anti’ : antisymmetric (fun x y⇒ le y x);
trans : transitive le;
trans’ : transitive (fun x y⇒ le y x); }.

Figure 2: The porderType mixins defined for (T : eqType) without (left) and with (right) def-
initionally involutive duals. The latter one includes all the dual axioms (highlighted by red)
that replaces le and lt with their transpositions in their counterparts (highlighted by blue).

Applications In MathComp Analysis [1], we manipulate several ordered types such as numeric
domains, extended reals, and nonnegative subsets of numeric domains. We have successfully
defined and reasoned about those instances using displays. Also, the present work help us to
factor out the notion of absolute values and norms as normed Abelian groups as in [1, Sect. 4.2].

In Coq-Polyhedra [2], the introduction of meet semilattices has allowed to simplify the order
related properties of polyhedra (as subsets of Rn) in a significant way. Moreover, faces of
polyhedra have a structure of finite lattice with many special properties. The fact that the
collection of the face lattices of polytopes (i.e. bounded polyhedra) are closed under sublattices
play a central role in many proofs by induction. This has motivated the formalization of
sublattices, as well as other features such as atomicity and coatomicity. In a future work, dual
lattices will be used in order to formalize the polar of polytopes.
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