Hierarchy Builder

Cyril Cohen!, Kazuhiko Sakaguchi?, and Enrico Tassi®

! Inria, Université Cote d’Azur, France
Cyril.Cohen@inria.fr
2 University of Tsukuba, Japan
sakaguchi@logic.cs.tsukuba.ac.jp
3 Inria, Université Cote d’Azur, France
Enrico.Tassi@inria.fr

Context and Talk proposal Abstract algebra is extremely important in the mathematical
vernacular and libraries of machine checked code are, nowadays, organized around hierarchies
of structures. Unfortunately the language of Type Theory and the features provided by the Coq
system make the construction of a hierarchy hard even for expert users. The difficulty begins
with the non-orthogonal choices, between storing information as record fields or parameters,
and between using type classes and canonical structures for inference. To this, one may add the
concerns about performance and about the usability, by a non expert, of the final hierarchy.

‘HB gives the library designer a language to describe the building blocks of algebraic struc-
tures and to assemble them into a hierarchy. Similarly it provides the final user linguistic
constructs to build instances (examples) of structures and to teach the elaborator of Coq how
to take advantage of this knowledge during type inference. Finally B lets the library designer
improve the usability of his library by providing alternative interfaces to the primitive ones, a
feature that can also be used to accommodate changes to the hierarchy without breaking user
code. The details of HB, including its compilation to a variant of the Packed Classes discipline
and its implementation in the Elpi extension language for Coq, are given in [1].

In this talk we focus on how to use HB in a Coq development without any prior knowledge,
walking slowly through the example below, describing the bricks of the language from mixins —
i.e. bare bone building block of the hierarchy, packing operations and axioms — to structures.

‘HB is available for download at https://github.com/math-comp/hierarchy-builder.

Example: A hierarchy with a diamond in HB We first introduce the base structure of
our example, the structure CMonoid of commutative monoids, which is defined in two phases:
first its contents using HB.mixin and then the structure itself is declared using HB.structure.

HB.mixin Record CMonoid_of_Type A := { (* The set of amioms making A a commutative monotid. *)
zero : A; add A > A > A;
addrA : associative add; (* “add> is associative *)
addrC : commutative add; (* “add is commutative *)
addOr : left_id zero add; (* “zero s a neutral element *)
}.

HB.structure Definition CMonoid := { A of CMonoid_of_Type A }. (* The structure thereof. *)
Notation "O" := zero.
Infix "+" = add.

(* The type of the operations and azioms depend on a CMonoid.type structure. *)
Check addrC. (* ?M : CMonoid.type |- commutative (Q@add 2?M) *)

We extend this hierarchy with abelian group, semi ring and ring structures, which happen
to form a diamond (cf Figure 1), using only the bare minimum information: we use the same
pattern as before to create the abelian group and semi-ring structures, then a ring being no
more than the combination of the former structures, we do not even need to provide a mixin.

https://github.com/math-comp/hierarchy-builder

Hierarchy Builder C. Cohen and K. Sakaguchi and E. Tassi

HB.mixin Record AbelianGrp_of_CMonoid A of CMonoid A := { Ri
opp A > A . n9
(* We can write “add” here since A is a CMonoid *) ;
addNr : left_inverse zero opp add; (* “opp~ %s the additive inverse *)

;
/
7/
7/
7/
4
4
4

}. E == N,
HB.structure Definition AbelianGrp := { A of AbelianGrp_of_CMonoid A }. \\
Notation "- x" := (opp x). \\
Notation "x - y" := (add x (opp y)). [/ 1 N N
Fi s H \
: \
HB.mixin Record SemiRing_of_CMonoid A of CMonoid A := { p : \\
one : A; !
mul 2 A > A > A SemiRing AbelianGrp |
mulrA : associative mul; (* “mul’ %s associative *) \ A !
mullr : left_id one mul; (* “ome ™ is left neutral *) ! i ,"
mulrl : right_id ome mul; (* “one’ s right neutral *) | :' /l
mulrDl : left_distributive mul add; (* “mul’ distributes over *) '|‘ { /l
1
mulrDr : right_distributive mul add; (* “add> on both sides *) \\ CMonoid / /
mulOr : left_zero zero mul; (* “zero™ is absorbing “mul” *) ‘\\ // //
mulr0 : right_zero zero mul; (* on both sides *) N / e
}. N\ / 7
\ 4 7
HB.structure Definition SemiRing := { A of SemiRing_of_CMonoid A }. N S
Notation "1" := one. o7
Infix "k o= mul. Type

Figure 1: The hierarchy

(* We need no additional mizin to declare the Ring structure. *)
HB.structure Definition Ring := { A of SemiRing_of_CMonoid A & AbelianGrp_of_CMonoid A }.

Usage We can write abstract statements combining successive signatures:

(* An example statement in the signature of an Abelian group G, combining 0 and —. *)
Check forall G : AbelianGrp.type, forall x : G, x - x = 0.

(* An exzample statement in the signature of a Semiring S, combining 0, +, and *. *)
Check forall S : SemiRing.type, forall x : S, x * 1 + 0 = x.

(* An example statement in the signature of a Ring R, combining -, 1 and *. *)
Check forall R : Ring.type, forall x y : R, x * - (1 *y) = - x * y.

We can also equip Z with commutative monoid, abelian group and semi ring instances, and
‘HB equips it automatically with a ring instance, because there is only one possible choice.

HB.instance Definition Z_CMonoid := CMonoid_of_Type.Build Z 0%Z Z.add

Z.add_assoc Z.add_comm Z.add_O_1.
HB.instance Definition Z_AbelianGrp := AbelianGrp_of_CMonoid.Build Z Z.opp Z.add_opp_diag_1.
HB.instance Definition Z_SemiRing := SemiRing_of_CMonoid.Build Z 1%Z Z.mul

Z.mul_assoc Z.mul_1_1 Z.mul_1_r Z.mul_add_distr_r Z.mul_add_distr_1 Z.mul_O_1 Z.mul_O_r.

(* An example statement in the signature of the Z ring, combining Z, 0, +, —, 1 and * *)
Check forall x : Z, x * - (1 +x) =0 + 1.

Factories For space constraints we omit the declaration of the dashed arrows in Figure 1,
which are Factories, i.e. alternative ways of building the same structures from different inputs.

Factories are used to allow the insertion of intermediate structures in a hierarchy without
breaking user code, as well as to implement shortcuts: e.g. the factory to build a Ring from a
Type can omit the commutativity axiom of the addition, since it is implied by the other axioms.

References

[1] Cyril Cohen, Kazuhiko Sakaguchi, and Enrico Tassi. Hierarchy Builder: algebraic hierarchies made
easy in Coq with Elpi. In FSCD, 2020. URL: https://hal.inria.fr/hal-02478907.

https://hal.inria.fr/hal-02478907

