A Gentle Introduction to Container-based CI
for Coq projects (Coq-2020 extended abstract)

Erik Martin-Dorel

IRIT, Univ. Toulouse III — Paul Sabatier, Toulouse, France
erik.martin-dorel@irit.fr

Abstract

Continuous integration is a key notion in software development, as well as for develop-
ing formal proofs. In this talk, we briefly review the architecture of the components we
developed or used to this aim, while focusing on the Coq ecosystem, with the ultimate goal
to provide a tutorial for Coq users that may want to use one such approach for their own
projects, and gather questions or suggestions regarding the proposed infrastructure.

1 CI/CD for V&V: Introduction and Motivation

Continuous Integration (CI) denotes a set of practices that aims at developing and integrating
software artifacts in an “incremental” way. The “CI” term has first been proposed by Grady
Booch [Boo94, p. 256] in the scope of object-oriented software development. This notion also
integrates well in the scope of Verification and Validation (V& V), e.g., relying on unit tests
and integration tests that are systematically run after building the artifact.! Since then, CI
has been widely promoted and used in software development teams, as it significantly mitigates
typical integration issues, reducing the risk of regressions and the cost of software bugs that can
thus be found and fixed earlier. In particular, Extreme programming [Bec99] and subsequent
agile methodologies strongly rely on the notion of CI, with the overall idea to “harness change”
and “deliver working software frequently”. As mentioned by Martin Fowler [Fow06], CT itself
builds upon a dozen of practices. The last one (“automate deployment”) actually refers to
the so-called “CD” acronym, which denotes two slightly different approaches: (i) Continuous
Delivery: if the build and test stages succeed, the artifact can be deployed on-demand (typically
after a manual review and approval); (i) Continuous Deployment: if the build and test stages
succeed, the artifact is automatically deployed into production.

In the scope of Coq proofs development, CI pipelines can just consist in compiling the project
(build stage), testing benchmarks or reverse dependencies® (test stage), and automatically
uploading artifacts such as online documentation (continuous deployment stage). Beyond the
main development branch that is intended to be tested and deployed, CI pipelines can just as well
be triggered for feature branches and “pull requests”, in order to provide further insight when
reviewing a contribution. For instance, the continuous integration platform can be configured
to warn that a given change breaks the compatibility with a supported version of Coq.

2 From OS-level Virtualization to Container-based CI

An effective CI infrastructure relies on a dedicated server (the Continuous Integration platform,
that can be on-premise or hosted by a cloud provider). When the pipeline is triggered, the
server is in charge of fetching the code at stake and building it, ideally in an isolated way.
This isolation can be done by virtualization techniques, using hypervisors (virtual machines)
or OS-level virtualization (Docker® containers). Beyond the fact that a container is much more
lightweight than a virtual machine in terms of disk, memory, and CPU resources, its use in a
CI/CD context is particularly interesting because it enhances reproducibility (the container is
itself an artifact can be built, tested (CI) and deployed (CD) as is) as well as portability (e.g.,
a given container based on a Debian distribution, could be built on an Ubuntu-based CI server,
downloaded then run under Windows 10).

3 A panorama of the CI Tooling Available for Coq Projects

The development of the docker-coq tooling started from the need to build on Travis CI
(within the 50’ time limit) the validsdp library, which depends besides Coq, on nine OCaml
or Coq libraries. It resulted in the creation of three Docker Hub repositories (coqorg/coq,
mathcomp/mathcomp and mathcomp/mathcomp-dev) that gather pre-built Docker images® of

1«The principle of continuous integration applies as well to testing, which should also be a continuous activity
during the development process” [Boo94, p. 273].

2Similarly to the strategy that has been applied for the CI infrastructure of Coq itself [Zim19, Chap. 3.6].

3Released as free software since March 2013.

4Roughly speaking, a Docker image is a snapshot of a (running) container.


mailto:erik.martin-dorel@irit.fr
https://github.com/coq-community/docker-coq/wiki
https://github.com/validsdp/validsdp
https://hub.docker.com/r/coqorg/coq
https://hub.docker.com/r/mathcomp/mathcomp
https://hub.docker.com/r/mathcomp/mathcomp-dev

A Gentle Introduction to Container-based CI E. Martin-Dorel

Coq and of the Mathematical Components library, using the opam package manager. Also, a
dedicated tool docker-hub-helper was written to facilitate the maintenance of multi-branches,
“automated build repositories” on Docker Hub, even if this architecture appears not to scale
for large repositories, unlike some CD pipeline on, say, GitLab CI that deploys to Docker Hub.

Independently of docker-coq, Théo Zimmermann developed a CI infrastructure based on
the Nix package manager [Zim19, Chap. 7]. Both approaches are being used for the CI of
the cog-community GitHub projects, and the respective advantages of the two approaches are
outlined in the cog-community/manifesto wiki. Some Nix support for the math-comp library
is also developed by Cyril Cohen.

The coq-community organization gathers templates for CI configuration files that resulted
from experiments conducted with several platforms: Travis CI, CircleCI, and GitHub Actions—
which has a couple of advantages over the other solutions: it is naturally well-integrated in
GitHub, it provides a so-called Problem Matchers feature, useful in Pull Requests®, it offers a
large number of concurrent jobs, and the configuration file is very concise,® cf. Figure 1 which
shows two self-contained configurations for a Coq, opam-based project. Regarding GitLab CI
(which natively supports Docker), templates are also available” and the cogbot developed by
Théo Zimmermann can then be used to complement GitLab’s mirroring feature of GitHub
repositories.

As possible extensions of this work, it may be interesting to enhance the aforementioned
templates (e.g., by providing Nix support to the GitHub Actions template), simplify the gener-
ation and use of their meta.yml “pivot” file (regarding specification and propagation facilities),
to ultimately have a smooth update process for projects that rely on these templates. Also, the
required infrastructure for building mathcomp/mathcomp stable images could be adapted and
generalized, to help Coq users with maintaining their own registry of pre-built Docker images.

References

[Bec99] Kent Beck. Embracing change with extreme programming. Computer, 32(10):70-77, October
1999. doi:10.1109/2.796139.

[Boo94] Grady Booch. Object-oriented Analysis and Design with Applications. Benjamin/Cummings
Publishing Company, 1994.

[Fow06] Martin Fowler. Continuous Integration. URL: https://martinfowler.com/articles/
continuousIntegration.html#PracticesO0fContinuousIntegration, May 2006.

[Zim19] Théo Zimmermann. Challenges in the collaborative evolution of a proof language and
its ecosystem. PhD thesis, Paris Diderot University, France, 2019. URL: https://tel.
archives-ouvertes.fr/tel-02451322.

Figure 1: Minimal working example of docker-cog-action (file .github/workflows/cog-action.yml)
[vl syntax, as of 2020-06-18]. Left: use default docker-coq images. Right: use custom (larger) images.

name: CI name: CI
on: on:
push: push:
branches: ['master'] # forall push/merge in master branches: ['master'] # forall push/merge in master
pull_request: pull_request:
branches: ['*x'] # forall submitted Pull Requests branches: ['*x'] # forall submitted Pull Requests
jobs: jobs:
coq: mathcomp:
runs-on: ubuntu-latest runs-on: ubuntu-latest
strategy: strategy:
matrix: matrix:
coq_version: image:
- '8.11" - 'mathcomp/mathcomp:1.10.0-coq-8.10"
- 'dev' - 'mathcomp/mathcomp:1.10.0-coq-8.11'
ocaml_version: ['4.07-flambda'] - 'mathcomp/mathcomp:1.11.0-coq-dev'
fail-fast: false # don't stop jobs if one fails - 'mathcomp/mathcomp-dev:coq-dev'
steps: fail-fast: false # don't stop jobs if one fails
- uses: actions/checkout@v2 steps:
- uses: coq-community/docker-coq-action@vl - uses: actions/checkout@v2
with: - uses: cog-community/docker-cog-action@vi
opam_file: 'folder/coq-proj.opam' with:
coq_version: ${{ matrix.coq_version }} opam_file: 'folder/cog-proj.opam'
ocaml_version: ${{ matrix.ocaml_version }} custom_image: ${{ matrix.image }}

5See https://github.com/erikmd/docker-coq-github-action-demo/pull/5/files, file src/demo.v, line 14.
6To be compared with, e.g., the Travis CI Docker configuration file which is much more cluttered.
7See https://github.com/coq-community/templates/issues/25


https://math-comp.github.io/
https://opam.ocaml.org/
https://github.com/erikmd/docker-hub-helper
https://nixos.org/nix/
https://coq-community.org/
https://github.com/coq-community/manifesto/wiki/Continuous-Integration-with-Nix
https://github.com/math-comp/math-comp/wiki/Using-nix
https://github.com/coq-community/templates#readme
https://github.com/coq/bot#readme
https://github.com/coq-community/templates/issues/24
https://github.com/coq-community/templates/issues/20
https://hub.docker.com/r/mathcomp/mathcomp
http://dx.doi.org/10.1109/2.796139
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://martinfowler.com/articles/continuousIntegration.html#PracticesOfContinuousIntegration
https://tel.archives-ouvertes.fr/tel-02451322
https://tel.archives-ouvertes.fr/tel-02451322
https://github.com/coq-community/docker-coq-action#readme
https://gist.github.com/erikmd/be4ac4399d9ef83f892d3e910ea4771e
https://github.com/coq-community/docker-coq/wiki
https://gist.github.com/erikmd/6d4af38edcf6e8a6ce3207304d74300b
https://github.com/erikmd/docker-coq-github-action-demo/pull/5/files#diff-2e2be390f2cc790c610a0664d449caa9
https://github.com/erikmd/docker-coq-travis-ci-demo-1/blob/master/.travis.yml
https://github.com/coq-community/templates/issues/25

	CI/CD for V&V: Introduction and Motivation
	From OS-level Virtualization to Container-based CI
	A panorama of the CI Tooling Available for Coq Projects

