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When one defines an inductive type in Coq there are various derivable definitions one fre-
quently uses, like induction principles, subterm relations, equality deciders, countability proofs,
alternative representations of constructors, etc. Some of these can be derived automatically by
Coq or Coq plugins. For instance, Coq derives induction principles automatically: When one
defines a type of balanced trees with leaves labelled by elements of A as follows

Inductive brtree A : nat → Type :=
| Leaf (a : A ) : brtree A 0 | Node (n : nat ) (l : list (brtree A n ) ) : brtree A (S n ).

Coq automatically derives the principle

brtree_rect : ∀ (A : Type ) (P : ∀ n, brtree A n → Type ),
(∀ a, P 0 (Leaf A a ) ) → (∀ n l, P (S n ) (Node A n l ) ) → ∀ n (t : brtree A n ), P n t.

As is well-known, the automatic derivation ignores the nested recursive occurrence of brtree in
the argument l of the constructor Node.

Furthermore, the Equations [5] plugin for Coq for instance comes with a command

Derive Subterm for brtree.

which derives the direct subterm relation for brtree and tries to prove it well-founded – but
again this command ignores the recursive occurrence in Node.

Tassi’s Elpi plugin [6] already covers induction principles for nested inductive types like
brtree. It would be interesting to directly extend Coq’s induction principle mechanism to cover
nested inductives as well. However, writing Coq plugins and extending the Coq source code is
at least highly non-trivial. For non-experts, the OCaml code of both Coq and Coq plugins is
hard to access and almost impossible to adapt without the help of experts.

The MetaCoq project [3] aims at making the implementation of Coq plugins easier. Instead
of writing OCaml code, one implements a syntax transformation over an inductive type of terms
as pure Coq function. We present three plugins written in this style and hope that the proposed
presentation can make writing MetaCoq plugins more accessible.

Our plugins are available at https://github.com/uds-psl/metacoq-examples-coqws.

Alternative constructors for types When one works with dependent inductive types like
brtree it might be helpful to define

Node_eqs : ∀ n (l : list (brtree A b ) ) m, m = S n → brtee A m

Writing a syntax transformation on MetaCoq’s inductive type of Coq terms transforming
the type of Node to the type of Node_eqs is straightforward. In MetaCoq, the type ∀ x : A. B

for instance is represented by the element tProd (nNamed "x" ) A B of the inductive type term,
and bindings are implemented by tRel n using de Bruijn indices. We provide a command

MetaCoq Run Derive Generalized Constructor for Node as Node_eqs.

applicable to non-mutual inductive types, which derives Node_eqs via the following function:

https://github.com/uds-psl/metacoq-examples-coqws


Fixpoint abstract_eqns (Σ : global_env_ext ) (Γ : context ) (ty : term ) (n : nat ) : term :=
match ty with

| tProd na A B ⇒
tProd na A (abstract_eqns Σ (Γ,, na 7→A ) B 0 )
| tApp L A ⇒
let type_of_x := try_infer Σ Γ (lift (2 ∗ n ) 0 A ) in (* returns type or tRel 0 * )

let eqn := mkApps tEq [ type_of_x; tRel 0; lift (1 + 2 ∗ n ) 0 A] in

tProd (nNamed "x" ) type_of_x

(tImpl eqn (abstract_eqns Σ (Γ,"x" 7→type_of_x,eqn ) L (S n ) ) )
| B ⇒ mkApps B (map (fun m ⇒ tRel (1 + 2 ∗ m ) ) (seq 0 n ) )
end.

Induction principles for nested inductive types Similarly, we implement a syntax trans-
formation generating a proof term of an induction principle given a representation of an induc-
tive type. Using ideas from Tassi’s Elpi plugin [6] we support non-mutual nested inductive types
by re-using the unary parametricity translation implemented in [1] and provide a command

MetaCoq Run Scheme Induction for brtree.

which derives the strongest possible induction principle:

brtree_ind_MC : ∀ p : ∀ (A : Type ) (n : nat ), brtree A n → Type,
(∀ A a, p A 0 (Leaf A a ) ) →
(∀ A n l, is_list (brtree A n ) (p A n ) l → p A (S n ) (Node A n l ) ) →
∀ A n t, p A n t

Note that is_list is essentially the List. Forall relation lifted to Type.

Subterm relation Lastly, we implement a syntax transformation which generates the sub-
term relation for non-mutual inductive types (not covering nested inductives). For instance,

MetaCoq Run Derive subterm for list.

derives

Inductive list_direct_subterm : ∀ A : Type, list A → list A → Prop :=
| cons_subterm0 : ∀ (A : Type ) (a : A ) (l : list A ), list_direct_subterm A l (a :: l ).

Future work It should not be hard to extend the derivation of subterm relations to also cover
nested inductive types. In principle MetaCoq also allows the verification of plugins, for instance
by relying on the verified type inference from [4] one could prove that the term generated in
the first plugin is well-typed, that the type of the induction principle is well-formed, or that
the reflexive transitive closure of the subterm relation is well-founded. We are trying to find
the right abstractions to make such proofs feasible. It would also be interesting to implement
automatic countability and finiteness proofs in MetaCoq, like [2] does based on type classes.
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